Skip to main content

Podocytes as a Direct Target of Drugs Used in Idiopathic Nephrotic Syndrome

  • Chapter
  • 666 Accesses

Abstract

Podocytes are terminally differentiated glomerular epithelial cells that are responsible for maintaining the structure and function of the glomerular filtration barrier in the kidney. Injury to podocytes can directly result in nephrotic syndrome, and thus these cells represent a promising target for renal protection. Immunosuppressive agents such as glucocorticoids and calcineurin inhibitors remain the primary treatments for nephrotic syndrome despite the lack of a complete understanding of their mechanisms of action. Increasing evidence suggests that these drugs may exert direct beneficial effects on podocytes themselves, suggesting that efficacy of these drugs in nephrotic syndrome may not be explained by their conventional anti-inflammatory or immunosuppressive actions but instead by a direct modulation of podocyte biology and signalling.

In this chapter, we will discuss the current concepts of podocytes as a direct target of drugs used in the treatment of idiopathic nephrotic syndrome and summarise the evidence for this in vitro and in vivo. These direct effects suggest that the conventional explanation for the effectiveness of the immunomodulatory therapies may be incorrect or only partially correct and that the design of novel therapies for nephrotic syndrome that target the podocyte itself could be beneficial in the future treatment of proteinuric diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17:117–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yu-Shengyou, Li Y. Dexamethasone inhibits podocyte apoptosis by stabilizing the PI3K/Akt signal pathway. Biomed Res Int. 2013;2013:326986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Reiser J, Von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113:1390–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Túri S, Németh I, Torkos A, Sághy L, Varga I, Matkovics B, et al. Oxidative stress and antioxidant defense mechanism in glomerular diseases. Free Radic Biol Med. 1997;22:161–8.

    Article  PubMed  Google Scholar 

  5. Greka A, Mundel P. Cell biology and pathology of podocytes. Annu Rev Physiol. 2012;74:299–323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. Nat Genet. 2000;24:333–5.

    Article  CAS  PubMed  Google Scholar 

  7. Wada T, Pippin JW, Marshall CB, Griffin SV, Shankland SJ. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J Am Soc Nephrol. 2005;16:2615–25.

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Sekizuka K, et al. Effects of angiotensin-converting enzyme inhibitor, angiotensin II receptor antagonist and calcium antagonist on urinary podocytes in patients with IgA nephropathy. Am J Nephrol. 2000;20:373–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hara M, Yanagihara T, Kihara I. Urinary podocytes in primary focal segmental glomerulosclerosis. Nephron. 2001;89:342–7.

    Article  CAS  PubMed  Google Scholar 

  10. Shankland SJ, Floege J, Thomas SE, Nangaku M, Hugo C, Pippin J, et al. Cyclin kinase inhibitors are increased during experimental membranous nephropathy: potential role in limiting glomerular epithelial cell proliferation in vivo. Kidney Int. 1997;52:404–13.

    Article  CAS  PubMed  Google Scholar 

  11. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein – nephrin – is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–82.

    Article  PubMed  Google Scholar 

  12. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  13. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5.

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet. 2000;24:251–6.

    Article  CAS  PubMed  Google Scholar 

  15. Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG, et al. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol. 2014;25:1415–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78:296–302.

    Article  CAS  PubMed  Google Scholar 

  17. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20:260–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH. Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol. 2014;29:2333–40.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kinra S, Rath B, Kabi BC. Indirect quantification of lipid peroxidation in steroid responsive nephrotic syndrome. Arch Dis Child. 2000;82:76–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Walker PD, Shah SV. Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J Clin Invest. 1988;81:334–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Raats CJI, Bakker MAH, Van Den Born J, Berden JHM. Hydroxyl radicals depolymerize glomerular heparan sulfate in vitro and in experimental nephrotic syndrome. J Biol Chem. 1997;272:26734–41.

    Article  CAS  PubMed  Google Scholar 

  22. Shah SV, Baliga R, Rajapurkar M, Fonseca VA. Oxidants in chronic kidney disease. J Am Soc Nephrol. 2007;18:16–28.

    Article  CAS  PubMed  Google Scholar 

  23. Ichikawa I, Fogo A. Reactive oxygen metabolites cause massive, reversible proteinuria and glomerular sieving defect without apparent ultrastructural abnormality. J Am Soc Nephrol. 1991;2:902–12.

    PubMed  Google Scholar 

  24. Chen S, Meng XF, Zhang C. Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury. Biomed Res Int. 2013;2013:839761.

    PubMed Central  PubMed  Google Scholar 

  25. Ricardo D, Bertram F, Ryan B, Bertram JF. Antioxidants protect podocyte foot processes in puromycin aminonucleoside-treated rats. J Am Soc Nephrol. 1994;4:1974–86.

    CAS  PubMed  Google Scholar 

  26. Kojima K, Matsui K, Nagase M. Protection of α3 integrin-mediated podocyte shape by superoxide dismutase in the puromycin aminonucleoside nephrosis rat. Am J Kidney Dis. 2015;35:1175–85.

    Article  Google Scholar 

  27. Kawamura T, Yoshioka T, Bills T, Fogo A, Ichikawa I. Glucocorticoid activates glomerular antioxidant enzymes and protects glomeruli from oxidant injuries. Kidney Int. 1991;40:291–301.

    Article  CAS  PubMed  Google Scholar 

  28. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene. 2001;20:7779–86.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang L, Dasgupta I, Hurcombe JA, Colyer HF, Mathieson PW, Welsh GI. Levamisole in steroid-sensitive nephrotic syndrome: usefulness in adult patients and laboratory insights into mechanisms of action via direct action on the kidney podocyte. Clin Sci. 2015;128:883–93.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao H, Shi W, Liu S, Wang W, Zhang B, Zhang Y, et al. 1,25-dihydroxyvitamin D3 prevents puromycin aminonucleoside-induced apoptosis of glomerular podocytes by activating the phosphatidylinositol 3-kinase/Akt-signaling pathway. Am J Nephrol. 2009;30:34–43.

    Article  PubMed  CAS  Google Scholar 

  31. Xing C, Saleem MA, Coward RJ, Ni L, Witherden IR, Mathieson PW. Direct effects of dexamethasone on human podocytes. Kidney Int. 2006;70:1038–45.

    Article  CAS  PubMed  Google Scholar 

  32. Ransom RF, Lam NG, Hallett MA, Atkinson SJ, Smoyer WE. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int. 2005;68:2473–83.

    Article  CAS  PubMed  Google Scholar 

  33. Guess A, Agrawal S, Wei C-C, Ransom RF, Benndorf R, Smoyer WE. Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am J Physiol Renal Physiol. 2010;299:F845–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Liu H, Gao XIA, Xu H, Feng C, Kuang X, Li Z, et al. α -actinin-4 is involved in the process by which dexamethasone protects actin cytoskeleton stabilization from adriamycin-induced podocyte injury. Nephrology. 2012;17:669–75.

    Article  CAS  PubMed  Google Scholar 

  35. Mathieson PW. The podocyte as a target for therapies – new and old. Nat Rev Nephrol. 2011;8:52–6.

    Article  PubMed  CAS  Google Scholar 

  36. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14:931–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chan AC. Rituximab’s new therapeutic target: the podocyte actin cytoskeleton. Sci Transl Med. 2011;3:85ps21.

    PubMed  Google Scholar 

  38. Hlatky M. Is renal biopsy necessary in adults with nephrotic syndrome? Lancet. 1982;320:1264–8.

    Article  Google Scholar 

  39. Gupta BBP, Lalchhandama K. Molecular mechanisms of glucocorticoid action. Curr Sci. 2002;83:1103–11.

    CAS  Google Scholar 

  40. Yan K, Kudo A, Hirano H, Watanabe T, Tasaka T, Kataoka S, et al. Subcellular localization of glucocorticoid receptor protein in the human kidney glomerulus. Kidney Int. 1999;56:65–73.

    Article  CAS  PubMed  Google Scholar 

  41. Ransom RF, Vega-Warner V, Smoyer WE, Klein J. Differential proteomic analysis of proteins induced by glucocorticoids in cultured murine podocytes. Kidney Int. 2005;67:1275–85.

    Article  CAS  PubMed  Google Scholar 

  42. Agrawal S, Guess AJ, Chanley MA, Smoyer WE. Albumin-induced podocyte injury and protection are associated with regulation of COX-2. Kidney Int. 2014;86:1153–63.

    Article  CAS  Google Scholar 

  43. Agrawal S, Guess AJ, Benndorf R, Smoyer WE. Comparison of direct action of thiazolidinediones and glucocorticoids on renal podocytes: protection from injury and molecular effects. Mol Pharmacol. 2011;80:389–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bertram JF, Messina A, Ryan GB. In vitro effects of puromycin aminonucleoside on the ultrastructure of rat glomerular podocytes. Cell Tissue Res. 1990;260:555–63.

    Article  CAS  PubMed  Google Scholar 

  45. Messina A, Davies DJ, Dillane PC, Ryan GB. Glomerular epithelial abnormalities associated with the onset of proteinuria in aminonucleoside nephrosis. Am J Pathol. 1987;126:220–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Whiteside CI, Cameron R, Munk S, Levy J. Podocytic cytoskeletal disaggregation and basement-membrane detachment in puromycin aminonucleoside nephrosis. Am J Pathol. 1993;142:1641–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Löwenborg EK, Jaremko G, Berg UB. Glomerular function and morphology in puromycin aminonucleoside nephropathy in rats. Nephrol Dial Transplant. 2000;15:1547–55.

    Article  PubMed  Google Scholar 

  48. Wada T, Pippin JW, Nangaku M, Shankland SJ. Dexamethasone’s prosurvival benefits in podocytes require extracellular signal-regulated kinase phosphorylation. Nephron Exp Nephrol. 2008;109:e8–19.

    Article  CAS  PubMed  Google Scholar 

  49. Björnson Granqvist A, Ebefors K, Saleem MA, Mathieson PW, Haraldsson B, Nyström JS. Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. Am J Physiol Renal Physiol. 2006;291:F722–30.

    Article  PubMed  CAS  Google Scholar 

  50. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κB-dependent pathway. Nephrol Dial Transplant. 2012;27:81–9.

    Article  CAS  PubMed  Google Scholar 

  51. Xing Y, Ding J, Fan Q, Guan N. Diversities of podocyte molecular changes induced by different antiproteinuria drugs. Exp Biol Med. 2006;231:585–93.

    CAS  Google Scholar 

  52. Li X, Yuan H, Zhang X. Adriamycin increases podocyte permeability: evidence and molecular mechanism. Chin Med J (Engl). 2003;116:1831–5.

    CAS  Google Scholar 

  53. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest. 2001;108:1621–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Liu G, Kaw B, Kurfis J, Rahmanuddin S, Kanwar YS, Chugh SS. Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J Clin Invest. 2003;112:209–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yamauchi K, Takano Y, Kasai A, Hayakawa K, Hiramatsu N, Enomoto N, et al. Screening and identification of substances that regulate nephrin gene expression using engineered reporter podocytes. Kidney Int. 2006;70:892–900.

    Article  CAS  PubMed  Google Scholar 

  56. Lehtonen S. Connecting the interpodocyte slit diaphragm and actin dynamics: emerging role for the nephrin signaling complex. Kidney Int. 2008;73:903–5.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Yoshida Y, Nameta M, Xu B, Taguchi I, Ikeda T, et al. Glomerular proteins related to slit diaphragm and matrix adhesion in the foot processes are highly tyrosine phosphorylated in the normal rat kidney. Nephrol Dial Transplant. 2010;25:1785–95.

    Article  CAS  PubMed  Google Scholar 

  58. Uchida K, Suzuki K, Iwamoto M, Kawachi H, Ohno M, Horita S, et al. Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int. 2008;73:926–32.

    Article  CAS  PubMed  Google Scholar 

  59. Ohashi T, Uchida K, Uchida S, Sasaki S, Nitta K. Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin Exp Nephrol. 2011;15:688–93.

    Article  CAS  PubMed  Google Scholar 

  60. Yu M, Ren Q, Yu SY. Role of nephrin phosphorylation inducted by dexamethasone and angiotensin II in podocytes. Mol Biol Rep. 2014;41:3591–5.

    Article  CAS  PubMed  Google Scholar 

  61. Fujii Y, Khoshnoodi J, Takenaka H, Hosoyamada M, Nakajo A, Bessho F, et al. The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int. 2006;69:1350–9.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Pippin JW, Krofft RD, Naito S, Liu Z-H, Shankland SJ. Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol. 2013;304:F1375–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Aramburu J, Heitman J, Crabtree GR. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep. 2004;5:343–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Fornoni A, Li H, Foschi A, Striker GE, Striker LJ. Hepatocyte growth factor, but not insulin-like growth factor I, protects podocytes against cyclosporin A-induced apoptosis. Am J Pathol. 2001;158:275–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4.

    Article  CAS  PubMed  Google Scholar 

  67. Möller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol. 2007;18:29–36.

    Article  PubMed  CAS  Google Scholar 

  68. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nürnberg G, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.

    Article  CAS  PubMed  Google Scholar 

  69. Mukerji N, Damodaran TV, Winn MP. TRPC6 and FSGS: the latest TRP channelopathy. Biochim Biophys Acta. 2007;1772:859–68.

    Article  CAS  PubMed  Google Scholar 

  70. Vassiliadis J, Bracken C, Matthews D, O’Brien S, Schiavi S, Wawersik S. Calcium mediates glomerular filtration through calcineurin and mTORC2/Akt signaling. J Am Soc Nephrol. 2011;22:1453–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kurihara H, Anderson JM, Kerjaschki D, Farquhar MG. The altered glomerular filtration slits seen in puromycin aminonucleoside nephrosis and protamine sulfate-treated rats contain the tight junction protein ZO-1. Am J Pathol. 1992;141:805–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Kawachi H, Kurihara H, Topham PS, Brown D, Shia MA, Orikasa M, et al. Slit diaphragm-reactive nephritogenic MAb 5-1-6 alters expression of ZO-1 in rat podocytes. Am J Physiol. 1997;273:F984–93.

    CAS  PubMed  Google Scholar 

  73. Kim BS, Park HC, Kang SW, Choi KH, Ha SK, Han DS, et al. Impact of cyclosporin on podocyte ZO-1 expression in puromycin aminonucleoside nephrosis rats. Yonsei Med J. 2005;46:141–8.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Stefanidis CJ, Querfeld U. The podocyte as a target: cyclosporin A in the management of the nephrotic syndrome caused by WT1 mutations. Eur J Pediatr. 2011;170:1377–83.

    Article  CAS  PubMed  Google Scholar 

  75. Bensman A, Niaudet P. Non-immunologic mechanisms of calcineurin inhibitors explain its antiproteinuric effects in genetic glomerulopathies. Pediatr Nephrol. 2010;25:1197–9.

    Article  PubMed  Google Scholar 

  76. Charbit M, Gubler MC, Dechaux M, Gagnadoux MF, Grünfeld JP, Niaudet P. Cyclosporin therapy in patients with Alport syndrome. Pediatr Nephrol. 2007;22:57–63.

    Article  PubMed  Google Scholar 

  77. Chen D, Jefferson B, Harvey SJ, Zheng K, Gartley CJ, Jacobs RM, et al. Cyclosporine a slows the progressive renal disease of alport syndrome (X-linked hereditary nephritis): results from a canine model. J Am Soc Nephrol. 2003;14:690–8.

    Article  CAS  PubMed  Google Scholar 

  78. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    Article  CAS  PubMed  Google Scholar 

  79. Senior PA, Paty BW, Cockfield SM, Ryan EA, Shapiro AM. Proteinuria developing after clinical islet transplantation resolves with sirolimus withdrawal and increased tacrolimus dosing. Am J Transplant. 2005;5:2318–23.

    Article  PubMed  Google Scholar 

  80. Aliabadi AZ, Pohanka E, Seebacher G, Dunkler D, Kammerstätter D, Wolner E, et al. Development of proteinuria after switch to sirolimus-based immunosuppression in long-term cardiac transplant patients. Am J Transplant. 2008;8:854–61.

    Article  CAS  PubMed  Google Scholar 

  81. Hochegger K, Wurz E, Nachbaur D, Rosenkranz AR, Clausen J. Rapamycin-induced proteinuria following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2009;44:63–5.

    Article  CAS  PubMed  Google Scholar 

  82. Torras J, Herrero-Fresneda I, Gulias O, Flaquer M, Vidal A, Cruzado JM, et al. Rapamycin has dual opposing effects on proteinuric experimental nephropathies: is it a matter of podocyte damage. Nephrol Dial Transplant. 2009;24:3632–40.

    Article  CAS  PubMed  Google Scholar 

  83. Biancone L, Bussolati B, Mazzucco G, Barreca A, Gallo E, Rossetti M, et al. Loss of nephrin expression in glomeruli of kidney-transplanted patients under m-TOR inhibitor therapy. Am J Transplant. 2010;10:2270–8.

    Article  CAS  PubMed  Google Scholar 

  84. Müller-Krebs S, Weber L, Tsobaneli J, Kihm LP, Reiser J, Zeier M, et al. Cellular effects of everolimus and sirolimus on podocytes. PLoS One. 2013;8:1–13.

    Article  CAS  Google Scholar 

  85. Vollenbröker B, George B, Wolfgart M, Wolfgart M, Saleem MA, Pavenstädt H, Weide T. mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. Am J Physiol Renal Physiol. 2009;296:F418–26.

    Article  PubMed  CAS  Google Scholar 

  86. Letavernier E, Bruneval P, Vandermeersch S, Perez J, Mandet C, Belair MF, et al. Sirolimus interacts with pathways essential for podocyte integrity. Nephrol Dial Transplant. 2009;24:630–8.

    Article  CAS  PubMed  Google Scholar 

  87. Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010;120:1084–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Cina DP, Onay T, Paltoo A, Li C, Maezawa Y, De Arteaga J, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012;23:412–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Wu L, Feng Z, Cui S, Hou K, Tang L, Zhou J, et al. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway resulting in reduced podocyte injury. PLoS One. 2013;8:e63799.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Baas MC, Kers J, Florquin S, De Fijter JW, van der Heide JJ, van den Bergh Weerman MA, et al. Cyclosporine versus everolimus: effects on the glomerulus. Clin Transplant. 2013;27:535–40.

    Article  CAS  PubMed  Google Scholar 

  91. Jeruschke S, Büscher AK, Oh J, Saleem MA, Hoyer PF, Weber S, et al. Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling. PLoS One. 2013;8:e55980.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Nozu K, Iijima K, Fujisawa M, Nakagawa A, Yoshikawa N, Matsuo M. Rituximab treatment for posttransplant lymphoproliferative disorder (PTLD) induces complete remission of recurrent nephrotic syndrome. Pediatr Nephrol. 2005;20:1660–3.

    Article  PubMed  Google Scholar 

  93. Gilbert RD, Hulse E, Rigden S. Rituximab therapy for steroid-dependent minimal change nephrotic syndrome. Pediatr Nephrol. 2006;21:1698–700.

    Article  PubMed  Google Scholar 

  94. Munyentwali H, Bouachi K, Audard V, Remy P, Lang P, Mojaat R, et al. Rituximab is an efficient and safe treatment in adults with steroid-dependent minimal change disease. Kidney Int. 2013;83:511–6.

    Article  CAS  PubMed  Google Scholar 

  95. Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3:85ra46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Yu C-C, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2013;369:2416–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Moertel CG, et al. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med. 1990;322:352–8.

    Article  CAS  PubMed  Google Scholar 

  98. Elmas AT, Tabel Y, Elmas ÖN. Short- and long-term efficacy of levamisole in children with steroid-sensitive nephrotic syndrome. Int Urol Nephrol. 2013;45:1047–55.

    Article  CAS  PubMed  Google Scholar 

  99. Hodson EM, Willis NS, Craig JC. Non-corticosteroid treatment for nephrotic syndrome in children. Cochrane Database Syst Rev. 2008;1, CD002290.

    PubMed  Google Scholar 

  100. Hodson EM, Craig JC, Willis NS. Evidence-based management of steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2005;20:1523–30.

    Article  PubMed  Google Scholar 

  101. Levamisole for childhood nephrotic syndrome. Lancet. 1991;337:1574.

    Google Scholar 

  102. Davin JC, Merkus MP. Levamisole in steroid-sensitive nephrotic syndrome of childhood: the lost paradise? Pediatr Nephrol. 2005;20:10–4.

    Article  CAS  PubMed  Google Scholar 

  103. Yoshioka K, Ohashi Y, Sakai T, Ito H, Yoshikawa N, Nakamura H, et al. A multicenter trial of mizoribine compared with placebo in children with frequently relapsing nephrotic syndrome. Kidney Int. 2000;58:317–24.

    Article  CAS  PubMed  Google Scholar 

  104. Tanaka H, Aizawa T, Watanabe S, Oki E, Tsuruga K, Imaizumi T. Efficacy of mizoribine-tacrolimus-based induction therapy for pediatric lupus nephritis. Lupus. 2014;23:813–8.

    Article  CAS  PubMed  Google Scholar 

  105. Ichinose K, Origuchi T, Kawashiri S, Iwamoto N, Fujikawa K, Aramaki T, et al. Efficacy and safety of mizoribine by one single dose administration for patients with rheumatoid arthritis. Intern Med. 2010;49:2211–8.

    Article  CAS  PubMed  Google Scholar 

  106. Rokutanda R, Kishimoto M, Ohde S, Shimizu H, Nomura A, Suyama Y, et al. Safety and efficacy of mizoribine in patients with connective tissue diseases other than rheumatoid arthritis. Rheumatol Int. 2014;34:59–62.

    Article  CAS  PubMed  Google Scholar 

  107. Mitchell BS, Dayton JS, Turka LA, Thompson CB. IMP dehydrogenase inhibitors as immunomodulators. Ann N Y Acad Sci. 1993;685:217–24.

    Article  CAS  PubMed  Google Scholar 

  108. Nakajo A, Khoshnoodi J, Takenaka H, Hagiwara E, Watanabe T, Kawakami H, et al. Mizoribine corrects defective nephrin biogenesis by restoring intracellular energy balance. J Am Soc Nephrol. 2007;18:2554–64.

    Article  CAS  PubMed  Google Scholar 

  109. Takeuchi S, Hiromura K, Tomioka M, Takahashi S, Sakairi T, Maeshima A, et al. The immunosuppressive drug mizoribine directly prevents podocyte injury in puromycin aminonucleoside nephrosis. Nephron Exp Nephrol. 2010;116:e3–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin I. Welsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Jiang, L., Mathieson, P.W., Welsh, G.I. (2016). Podocytes as a Direct Target of Drugs Used in Idiopathic Nephrotic Syndrome. In: Kaneko, K. (eds) Molecular Mechanisms in the Pathogenesis of Idiopathic Nephrotic Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55270-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55270-3_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55269-7

  • Online ISBN: 978-4-431-55270-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics