Skip to main content

Dynamic Properties of Quantity Adjustment Process Under Demand Forecast Formed by Moving Average of Past Demands

  • Chapter
  • First Online:
Microfoundations of Evolutionary Economics

Abstract

In this chapter, we shall analyze a family of multi-sector dynamic models of the quantity adjustment process in which firms determine their productions and raw material orders based on inventories and demand forecasts under constant prices and final demands. Special attention is paid to the role of demand forecast by a moving average of past demands. Section 4.1 describes the assumptions common to all the models and explains how and in what sequence firms determine productions and raw material orders. For the demand forecast method, we assume the simple moving average and the geometric moving average. Sections 4.2 and 4.3 investigate the dynamic properties of the process generated through the interactions between sectors under the above two demand forecast methods. A series of theorems will elucidate how the stability of the process depends on the input structure, the extent of averaging, and the buffer inventory coefficients. It will be shown that averaging of past demands in the demand forecast formation is essential for stability if the input matrix has negative or complex eigenvalues reflecting the interactions between sectors. Section 4.4 closely examines the mechanism of stabilization by averaging of past demands in forecast formation. Stability conditions corresponding to the forecast by the finite geometric moving average will indicate that stability depends on the allocation of weights to each past demand in addition to the number of past periods referred for averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since A is a nonnegative square matrix, its spectrum radius is equal to its Frobenius root (Nikaido 1961). The reproducibility condition is also equivalent to I − A satisfying the Hawkins-Simon’s condition (Hawkins and Simon 1949).

  2. 2.

    As described in Subsect. 3.4.6 of the previous chapter, the buffer function of raw material inventories was first modelized by Foster (1963).

  3. 3.

    For simplicity, we assume here that the buffer inventory coefficients for various raw materials are uniform within the firm.

  4. 4.

    The corresponding stationary values of product and raw material inventories are z * = \( {\overline{s}}^e_{i}\left(1+k_{i}\right)-{x}_{i}^{\ast } \) and \( {v}_i^{\ast}=\left(\left(1+{l}_i\right){\overline{s}}_i^e-{x}^{\ast}_{i}\right){a}_i \), respectively. Note that the convergence to these values requires that \( {\overline{s}}_i^e\ge {x}_i^{\ast}{\left(1+{k}_i\right)}^{-1} \) and \( {\overline{s}}_i^e\ge {x}^{\ast}_i{\left(1+{l}_i\right)}^{-1} \) are satisfied for any i. If one of these conditions do not hold, convergence is hindered by the depletion of inventories.

  5. 5.

    The S , s policy, which was referred to in Subsect. 3.2.3 of the previous chapter, can be regarded as a way of adjustment based on a fixed forecast. When each firm follows this policy in its decision on the production, (4.3) is replaced by

    $$ {x}_i(t)={Q}_i-{z}_i(t)\kern0.5em \mathrm{if}\kern0.5em {z}_i(t)<{q}_i\kern0.5em \mathrm{and}\kern0.5em {x}_i(t)=0\ \mathrm{if}\kern0.5em {z}_i(t)\ge {q}_i, \vspace*{-4pt} $$

    where Q i and q i correspond to S and s, respectively. Let Q and q be the vectors of Q i and q i, and for simplicity, let us assume, in place of (4.4), that the raw material orders are simply determined by m i(t) = x i(t)a i. Then, in matrix notation, it holds s(t) = x(t)A + d. In this case, as long as z i(t) < q i holds for any sector and in any period, we have

    $$ x(t)=Q-z(t)=x\left(t-1\right)A+d. \vspace*{-4pt} $$

    Therefore, if x(0) = d(I − A)−1 and z(0) < q, then the system is stable against a small perturbation of final demand d. It should be noted that Taniguchi’s model in Chap. 6, Subsect. 6.3.3 of this book, is based on different assumptions about the time sequence of events. Under those assumptions, the production is determined by

    $$ {x}_i(t)={Q}_i-{z}_i\left(t-1\right)\kern0.5em \mathrm{if}\kern0.5em {z}_i\left(t-1\right)<{q}_i\kern0.5em \mathrm{and}\kern0.5em {x}_i(t)=0\ \mathrm{if}\kern0.5em {z}_i\left(t-1\right)\ge {q}_i, \vspace*{-4pt} $$

    and (4.1) is modified to z i(t) = z i(t − 1) + x i(t − 1) − s i(t). Accordingly, we have

    $$ x\left(t+1\right)=x(t)\left(I+A\right)-x\left(t-1\right)+d. $$

    As Taniguchi remarks, this system is unstable if the economy consists of more than three sectors. A cause of such instability lies in that firm i does not consider x i(t − 1), which is already known at the beginning of period t, in its decision on x i(t).

  6. 6.

    Lovell obtained a similar result (1962, p. 274–275).

  7. 7.

    The Frobenius roots calculated from the input-output tables of the Japanese economy in 1995-2011 are 0.5242 (93 sectors, 1995), 0.5230 (104 sectors, 2001), and 0.5527 (190 sectors, 2005).

  8. 8.

    “It would be too complicated to work out the expectation de novo whenever a productive process was being started; and it would, moreover, be a waste of time since a large part of the circumstances usually continues substantially unchanged from one day to the next” (Keynes 1936, p. 51, emphasis added).

  9. 9.

    Simon (1959, p. 269) suggests that forecasts formed by the assumption that “the next period will be a weighted average of recent past periods” are sufficiently satisfactory from a practical perspective. He further adds, “The elaboration of the models [of expectations] beyond the first few steps of refinement does not much improve prediction.”

  10. 10.

    In economic literature, this forecasting method is usually called “adaptive expectation.” Regarding detailed properties of the exponential smoothing or the geometric moving average, refer to Muth (1960) and Hines (2004).

  11. 11.

    For more on the indecomposable matrices, refer to Nikaido (1961, pp. 80-89).

  12. 12.

    For the properties of cyclic (or imprimitive) matrices, refer to Nikaido (1961, pp. 103–113).

  13. 13.

    In fact, for τ = 3, (4.26) is equivalent to μ < μ 1, where μ 1 is the only positive root of μ(3b + b 2 μ + b(3 + 2b)μ 2) < 9 (μ = λ F(A)).

  14. 14.

    This proposition was first proved in Morioka (19911992).

  15. 15.

    Matrix \( \left[\begin{array}{cc}{a}_{11}& {a}_{12}\\ {}{a}_{21}& {a}_{22}\end{array}\right] \) has a negative eigenvalue when a 11 a 22 < a 12 a 21. This condition implies that the coefficients corresponding to the intersectoral input-output relationship are relatively large in comparison with the ones corresponding to self-consumption.

  16. 16.

    This is shown from \( {\left(\frac{b\mu}{\tau}\right)}^{\frac{1}{\tau +1}}<\overline{\phi}<1 \) for \( \tau >\left(\frac{2b}{\tau }+1\right)\mu \) and \( \underset{\tau \to \infty }{\lim }{\left(\frac{b\mu}{\tau}\right)}^{\frac{1}{\tau +1}}=1 \).

  17. 17.

    This proposition is first proved in Morioka (19921992).

  18. 18.

    If τ i = 2 and r i can take a negative value equal to or larger than \( -{1}/{2} \), then (4.37) covers the method of the demand forecast assumed in Metzler (1941) and Foster (1963).

  19. 19.

    For any w 1, …, w τ such that w 1 + … + w τ = 1, the sum of squares \( {w}_1^2+\dots +{w}_{\tau}^2 \) is minimized when \( {w}_1=\dots ={w}_{\tau }={1}/{\tau } \). Therefore, the variance of averaged demand is minimized by equal allocation of weights among past demands.

  20. 20.

    This is identical with the stability condition of Metzler’s model (inequality (3.24) in the previous chapter) if μ is replaced by c, r by \( -\eta/({1+\eta}) \), and 1 + k by b (Metzler 1941).

  21. 21.

    Theorem 9 can be extended for \( -{1}/{2}\le r<0 \). Since \( {\mu}_2\left(-{1}/{2},b\right)<{\mu}_2\left(0,b\right) \), demand forecast by \( {s}_i^e(t)={s}_i\left(t-1\right)+ h \left({s}_i\left(t-1\right)-{s}_i\left(t-2\right)\right)\ \left(0< h <1\right) \) is more likely to cause instability than the static expectation.

  22. 22.

    Assumptions in our models about decisions by individual firms satisfy the following three prerequisites set by Simon (1959, p. 275): “(1) The models must be formulated so as to require for their application only data that are obtainable. … (2) The models must call only for practicable computations. … (3) The models must not demand unobtainable forecast information.”

  23. 23.

    As remarked in the previous chapter, this fact was first discovered by Taniguchi (1991) using numerical computations.

  24. 24.

    The method of proof used here is based on Simonovits (1999). The theorem itself was first proved in Morioka (2005).

  25. 25.

    On this theorem, see Nikaido (1961, p. 114).

  26. 26.

    By Descartes’ rule of signs, a real algebraic equation whose coefficients change their signs from plus to minus only once has one and only one positive root. See Takagi (1965, p. 101)

  27. 27.

    Concerning this theorem, refer to Takagi (1965, p. 104–105).

  28. 28.

    Concerning Schur’s condition, refer to Takagi (1965, pp. 373–376).

  29. 29.

    When the characteristic equation of a second-order linear difference equation has a pair of conjugates roots \( \left\{\lambda, \overline{\lambda}\right\} \), its solution is written as

    $$ x(t)={\left|\lambda \right|}^t\frac{\sqrt{x^2(0){\left|\lambda \right|}^2-2x(0)x(1)\operatorname{Re}\lambda +{x}^2(1)}}{\left|\operatorname{Im}\ \lambda \right|}\cos \left( t\theta +\omega \right), $$
    $$ \tan \theta =\frac{\operatorname{Im}\lambda }{\operatorname{Re}\lambda },\tan \omega =\frac{x(0)\operatorname{Re}\lambda -x(1)}{x(0)\operatorname{Im}\lambda }, $$

    where x(0) and x(1) are initial values.

  30. 30.

    The maximum solution (measured by absolute value) of an algebraic equation is not smaller than that of its derivative function. On this theorem, see Takagi (1965, pp. 102–104).

  31. 31.

    This result can be shown also by differentiating ϕ ¯ μ , 𝜃 , τ , b with respect to μ. In fact, ϕ ¯ is differentiable with respect to any of its arguments except at 𝜃=0,μ= 1 + τ Y 1 / τ /B. However, it is a tedious work to prove this and to examine the sign of the derivatives. See Morioka (2005, pp. 280–282).

  32. 32.

    Like the case of ϕ ¯ μ , 𝜃 , τ , b , this result can be shown also by differentiating ψ ¯ μ , 𝜃 , γ , b with respect to μ. In fact, ψ ¯ μ , 𝜃 , γ , b is differentiable with respect to any of its arguments unless 𝜃=0,γ= 1 μ / ± 1 . See Morioka (2005, pp. 283–284).

  33. 33.

    Concerning this point, refer to Takagi (1965, pp. 48–49)

References

  • Brown, R. G. (1959). Statistical forecasting for inventory control. New York: McGraw-Hill.

    Google Scholar 

  • Foster, E. (1963). Sales forecasts and the inventory cycle. Econometrica, 31(3), 400–421.

    Article  Google Scholar 

  • Hawkins, D., & Simon, H. (1949). Note: Some conditions of macro economic stability. Econometrica, 17(3-4), 245–248.

    Article  Google Scholar 

  • Hines, W. G. S. (2004). Geometric moving average. In Encyclopedia of statistical sciences (Vol. 4, 2nd ed., pp. 2784–2788). New York: Wiley-Interscience.

    Google Scholar 

  • Keynes, J. M. (1936). The general theory of employment, interest and money. London: Macmillan.

    Google Scholar 

  • Lovell, M. C. (1962). Buffer stocks, sales expectations and stability: A multi-sector analysis of the inventory cycle. Econometrica, 30(2), 267–296.

    Article  Google Scholar 

  • Metzler, L. A. (1941). The nature and stability of inventory cycle. The Review of Economic Statistics, 23(3), 113–129.

    Article  Google Scholar 

  • Morioka, M. (1991–1992). Two types of the short-term adjustment processes (in Japanese: Tanki choseikatei no niruikei). Keizai Ronso (Kyoto University), 148(4-6), 140–161, 149(1–3), 79–96.

    Google Scholar 

  • Morioka, M. (2005). The Economic Theory of Quantity Adjustment: Dynamic analysis of stockout avoidance behavior (in Japanese: Suryo chosei no keizai riron). Tokyo: Nihon Keizai Hyoronsya.

    Google Scholar 

  • Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journal of American Statistical Association, 55, 299–360.

    Article  Google Scholar 

  • Nikaido, H. (1961). Linear Mathematics for Economics (in Japanese: Keizai no tameno senkei sugaku). Tokyo: Baihukan.

    Google Scholar 

  • Simon, H. A. (1959). Theories of decision making in economics and Behavioral science. American Economic Review, 49(3), 253–283.

    Google Scholar 

  • Simonovits, A. (1999). Linear decentralized control with expectations. Economic Systems Research, 11(3), 321–329.

    Article  Google Scholar 

  • Takagi, T. (1965). Lectures on Algebra (In Japanese: Daisugaku kogi). Kyoritsu Shuppan.

    Google Scholar 

  • Taniguchi, K. (1991). On the traverse of quantity adjustment economies (in Japanese: Suryo chosei keizai ni okeru iko katei nitsuite). Keizaigaku Zashi 91(5):29-43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

1. Proof of Theorem  1 Footnote 24

(i) Let ϕ ≠ 0 be an eigenvalue of Φ, and let ξ = [ξ τ, ξ τ−1, …, ξ 1, η] be an associated eigenvector, where ξ i and η are 1 × n vectors. Then, from ϕξ = ξΦ we obtain

$$ \xi =\left[{\phi}^{\tau}\eta, {\phi}^{\tau -1}\eta, \dots, \phi \eta, \eta \right],\quad \phi \eta =\eta Q\left(\phi \right)A, \vspace*{-8pt} $$
$$ Q\left(\phi \right)\equiv\left(\phi -1\right)\left({\phi}^{-1}{U}_1+\dots +{\phi}^{-\tau }{U}_{\tau}\right)B+I. $$

Therefore, ϕ is also an eigenvalue of Q(ϕ)A. Conversely, if ϕ is an eigenvalue of Q(ϕ)A and η is the corresponding eigenvector, then it is also an eigenvalue of Φ and the above ξ is the corresponding eigenvector. Consequently, ϕ ≠ 0 is an eigenvalue of Φ if and only if ϕ is an eigenvalue of Q(ϕ)A.

To prove the contraposition, assume ρ(Φ) ≥ 1 and ϕ is an eigenvalue of Φ such that ϕ ≥ 1. Then, from the above fact, it follows \( 1\le \rho \left(Q\left(\phi \right)A\right).\vspace*{-3pt} \) Let q i be the i-th diagonal element of matrix Q(ϕ), then

q i = 1 1 ϕ τ i b i τ i + 1 2 b i τ i + 1
(4.47)

Let C + denote a matrix obtained from a matrix C by replacing its elements with their absolute values. It is known that ρ(C) ≤ λ F(C +) holds for any complex square matrix C.Footnote 25 Since Q(ϕ) is diagonal and A is nonnegative, (4.47) leads to

$$ {(QA)}^{+}\le {Q}^{+}A\le \left(2{T}^{-1}B+I\right)A. $$

Since ϕ is an eigenvalue of QA, these inequalities lead to

$$ 1\le \rho (QA)\le {\lambda}^{\mathrm{F}}\left({(QA)}^{+}\right)\le {\lambda}^{\mathrm{F}}\left({Q}^{+}A\right)\le {\lambda}^{\mathrm{F}}\left(\left(2{T}^{-1}B+I\right)A\right).\vspace*{-8pt} $$

(ii) To prove the contraposition, assume that ω λ F(A) is an eigenvalue of A satisfying (4.22) and \( {\lambda}^{\ast } \)  = λ F((2T −1 B + I)A) ≥ 1. Let ϕ ≠ 0, ψ = ω −1 ϕ, and \( \tilde{A}={\omega}^{-1}A \); then since \( {\omega}^{\tau_i}=-1 \) for any i, ϕ is an eigenvalue of Φ if and only if ψ is an eigenvalue of \( F\left(\psi \right)\tilde{A} \), where

$$ F\left(\psi \right)=\left[\begin{array}{ccc}1+{\psi}^{-{\tau}_1}& \cdots & 0\\ {}\vdots & \ddots & \vdots \\ {}0& \cdots & 1+{\psi}^{-{\tau}_n}\end{array}\right]{T}^{-1}B+I. $$

For any ψ > 0, matrix F(ψ)A is a nonnegative and identically cyclic with matrix A; hence ωλ F(F(ψ)A) is an eigenvalue of F(ψ)A, and hence λ F(F(ψ)A) is an eigenvalue of \( F\left(\psi \right)\tilde{A} \). Let

$$ h\left(\psi \right)=\psi -{\lambda}^{\mathrm{F}}\left(F\left(\psi \right)A\right)\ \mathrm{for}\kern0.50em \psi >0, $$

then h(ψ) is an eigenvalue of \( \psi I-F\left(\psi \right)\tilde{A} \); hence h(ψ) = 0 implies that ϕ = ωψ is an eigenvalue of Φ. It follows from F(λ \( ^{\ast} \)) ≤ F(1) that \( {\lambda}^{\mathrm{F}}\left(F\left({\lambda}^{\ast}\right)A\right)\le {\lambda}^{\mathrm{F}}\left(F(1)A\right)={\lambda}^{\ast }; \)hence

\( h\left({1}\right)=1-{\lambda}^{\mathrm{F}}\left(F(1)A\right)=1-{\lambda}^{\ast}\le 0,\hspace*{2pt} \) \( h\left({\lambda}^{\ast}\right)={\lambda}^{\mathrm{F}}\left(F(1)A\right)-{\lambda}^{\mathrm{F}}\left(F\left({\lambda}^{\ast}\right)A\right)\ge 0.\vspace*{8pt} \)

Since polynomial h is continuous with respect to ψ, there exists an α such that

$$ 1\le \alpha \le {\lambda}^{\mathrm{F}}\left(\left(2{T}^{-1}B+I\right)A\right),\kern0.5em h\left(\alpha \right)=\alpha -{\lambda}^{\mathrm{F}}\left(F\left(\alpha \right)A\right)=0; \vspace*{-2pt} $$

hence αω is an eigenvalue of Φ. Therefore,

$$ \rho \left(\Phi \right)\ge \left|\alpha \omega \right|\ge 1. $$

2. Proof of Theorem 2

(i) The characteristic equation of Φ′ is

$$ F\left(\phi \right)=\left|{\phi}^{\tau +1}I-{\phi}^{\tau}\left(\frac{b}{\tau }+1\right)A+\frac{b}{\tau }A\right|=0. $$

Let Λ be the Jordan normal form of matrix A, then there exists a regular matrix X satisfying XAX −1 = Λ and

$$ {\displaystyle \begin{array}{c}F\left(\phi \right)=\left|X\left({\phi}^{\tau +1}I-{\phi}^{\tau}\left(\frac{b}{\tau }+1\right)A+\frac{b}{\tau }A\right){X}^{-1}\right|\\ {}=\prod \limits_{i=1}^{\nu }{\left({\phi}^{\tau +1}-{\phi}^{\tau}\left(\frac{b}{\tau}+1 \right){\lambda}_i+\frac{b}{\tau}{\lambda}_i\right)}^{\kappa_i},\end{array}} $$

where ν is the number of A’s different eigenvalues and κ i is the multiplicity of an eigenvalue \( {\lambda}_i={\mu}_i{\mathrm{e}}^{\mathrm{i}{\theta}_i} \) (thus \( {\kappa}_1 + \cdots + {\kappa}_n=n \)). Thus, ρ(Φ′) < 1 is equivalent to \( \overline{\phi}\left({\mu}_i,{\theta}_i,\tau, b\right)<1 \) for any i ∈ {1, …, ν}.

(ii) Let ξeiω = ξ(cosω + i sin ω) (ξ ≥ 0) be a root of (4.24). Then, it satisfies

$$ f\left(\xi, \omega, \theta \right) \equiv {\xi}^{\tau +1}{\mathrm{e}}^{\mathrm{i}\left(\tau +1\right)\omega }-\left(\frac{b}{\tau}+1 \right)\mu {\mathrm{e}}^{\mathrm{i}\left(\tau \omega +\theta \right)}{\xi}^{\tau }+ \frac{b}{\tau}\mu {\mathrm{e}}^{\mathrm{i}\theta }=0. $$

Let \( {\theta}^{\prime }=\theta +{2\pi}/{\tau },{\omega}^{\prime }=\omega +{2\pi}/{\tau },{\theta}^{{\prime\prime} }={2\pi}/{\tau }-\theta, {\omega}^{{\prime\prime} }= {2\pi}/{\tau }-\omega, \) then

$$ f\left(\xi, {\omega}^{\prime },{\theta}^{\prime}\right)={\mathrm{e}}^{2\mathrm{i}\frac{\pi }{\tau }}f\left(\xi, \omega, \theta \right)=0,\ f\left(\xi, {\omega}^{{\prime\prime} },{\theta}^{{\prime\prime}}\right)={\mathrm{e}}^{2\mathrm{i}\frac{\pi }{\tau }}f\left(\xi, -\omega, -\theta \right)=0. $$

The second equation is obtained by observing that f(ξ, −ω, −θ) is the conjugate of f(ξ, ω, θ). Therefore, when μeiθ rotates by 2π/τ radians on the complex plane, each of the solutions of (4.24) also rotates by 2π/τ radians. Furthermore, if θ 1 and θ 2 are symmetric on the complex plane about the direction π/τ, two sets of the roots of (4.24) corresponding θ 1 and θ 2 are also symmetric about this direction.

(iii) This statement is obvious for μ = 0, so let us assume μ > 0. Let

$$ {{g}}_{+}\left(\xi; \tau, {b},\mu \right)\equiv -{{e}}^{\mathrm{-i}\frac{\pi}{\tau}}{f}\left(\xi, \frac{\pi}{\tau},\frac{\pi}{\tau}\right)={\xi}^{\tau +1}-{\xi}^{\tau}\left(\frac{{b}}{\tau}+1\right)\mu -\frac{{b}}{\tau}\mu,\vspace*{-4pt} $$

and ϕ + μ , τ , b be the unique positiveξsuch that g + ξ ; τ , b , μ =0.Footnote 26 By a theorem about the upper bound on roots of an algebraic equationFootnote 27, it follows \( \overline{\phi}\left(\mu, \theta, \tau, b\right)\le {\phi}_{+}\left(\mu, \tau, b\right) \), where the equality sign holds if and only if θ = π/τ. Hence, \( \overline{\phi}\left(\mu, {\pi}/{\tau },\tau, b\right)<1 \) holds if and only if

$$ {g}_{+}\left(1;\tau, b,\mu \right)=\left(2b+\tau \right)\left(\overline{\mu}-\mu \right)>0, $$

where \( \overline{\mu} \equiv {\tau }/{(2b+\tau)} \). Therefore, \( \overline{\phi}\left(\overline{\mu},{\pi }/{\tau },\tau, b\right)=1 \) and

$$ \overline{\phi}\left(\mu, \theta, \tau, b\right)\le \overline{\phi}\left(\mu, {\pi }/{\tau },\tau, b\right)<1\ \mathrm{for}\kern0.5em \mu <\overline{\mu}. $$

Let α b / τ + 1 μ,β/τ, then 1α>β. According to Schur’s condition,Footnote 28 a necessary and sufficient condition for ϕ ¯ μ , 𝜃 , τ , b <1is that all the following inequalities hold:

$$ {C}_u\equiv \left|\begin{array}{cc}{I}_u+\alpha {\mathrm{e}}^{\mathrm{i}\theta }{J}_u& \beta {\mathrm{e}}^{\mathrm{i}\theta }{I}_u\\ {}\beta {\mathrm{e}}^{-\mathrm{i}\theta }{I}_u& {I}_u+\alpha {\mathrm{e}}^{-\mathrm{i}\theta }{J}_u^{\mathrm{T}}\end{array}\right|>0\ \left(u \in \{1,\dots, \tau\} \right),\vspace*{-3pt} $$
$$ \tilde{C}_{\tau +1}\equiv \left|\begin{array}{cc}{I}_{\tau +1}+\alpha {\mathrm{e}}^{\mathrm{i}\theta }{J}_{\tau +1}& \beta {\mathrm{e}}^{\mathrm{i}\theta }{I}_{\tau +1}+\alpha {\mathrm{e}}^{\mathrm{i}\theta }{K}_{\tau +1}\\ {}\beta {\mathrm{e}}^{-\mathrm{i}\theta }{I}_{\tau +1}+\alpha {\mathrm{e}}^{-\mathrm{i}\theta }{K}_{\tau +1}^{\mathrm{T}}& {I}_{\tau +1}+\alpha {\mathrm{e}}^{\mathrm{-i}\theta }{J}_{\tau +1}^{\mathrm{T}}\end{array}\right|>0,\vspace*{-3pt} $$
(4.48)

Where I u is the unit matrix of orderu, J u 0 I u 1 0 0 u 1 , K τ + 1 0 O τ 1 0 τ ( 0 u is the zero row vector of order u, O τ is the zero matrix of order τ), and Tdenotes transposition. Let C 0 =1, δ1+ α 2 β 2 . Then, since

$$ {{C}}_{{u}}=\left|\delta {{I}}_{{u}}+{{L}}_{{u}}-{\alpha}^2\left[\begin{array}{cc}{{\mathrm{O}}}_{{u}-1}& 0\\ {}{0}_{u-1}& 1\end{array}\right]\right|,\kern0.75em {{L}}_{{u}}\equiv \alpha {{e}}^{{i}\theta}{{J}}_{{u}}+\alpha {{e}}^{-{i}\theta}{{J}}_{{u}}^{{T}}, $$

C u satisfies the following recursion formula:

$$ {C}_u=\delta {C}_{u-1}-{\alpha}^2{C}_{u-2}. $$
(4.49)

Similarly, from

C ̃ τ + 1 = δ I τ + 1 + L τ + 1 α 2 1 0 τ 1 0 0 τ 1 T O τ 1 0 τ 1 T 0 0 τ 1 1 αβ K τ + 1 + K τ + 1 T ,

we have

$$ \tilde{C}_{\tau +1}=\left(1-{\beta}^2\right){C}_{\tau }-{\alpha}^2\left(1+{\beta}^2\right){C}_{\tau -1}-{\alpha}^2{\beta}^2{D}_{\tau -1}+2\left(-\alpha \right)^{\tau+1}\beta \cos \tau \theta, \vspace*{-18pt} $$
$$ D_0 = 0, {D}_u\equiv \left|\begin{array}{cc}\delta {I}_{u-1}+{L}_{u-1}& 0\\ {}0& {\alpha}^2\end{array}\right|. $$

It can be shown that D u satisfies the same recursion formula as that of C u . Let C 1 =1, D 1 =1, and

$${\mathit{E}}_{\mathit{\tau }}\equiv \left(1 - {\mathit{\beta }}^{2}\right){\mathit{C}}_{\mathit{\tau }} - {\mathit{\alpha }}^{2}\left(1 + {\mathit{\beta }}^{2}\right){\mathit{C}}_{\mathit{\tau } - 1} - {\mathit{\alpha }}^{2}{\mathit{\beta }}^{2}{\mathit{D}}_{\mathit{\tau } - 1}, $$

then C ̃ τ + 1 can be written as

$$ \tilde{C}_{\tau +1}={E}_{\tau }+2\left(-\alpha \right)^{\tau + 1}\beta \cos \tau \theta, $$
(4.50)

where E u satisfies the recursion formula:

$$ {E}_0=1-{\alpha}^2-{\beta}^2,\kern0.75em {E}_1={\left(1-\beta^2 \right)}^2-{\alpha}^2{\left(1+\beta^2 \right)},\kern0.75em {E}_u=\delta {E}_{u-1}-{\alpha}^2{E}_{u-2}. $$

Assume \( \mu >\overline{\mu} \), then \( -\alpha +\beta =\mu /\overline{\mu}>1 \), hence

$$ {\delta}^2-4{\alpha}^2=\left({\left(1+\alpha \right)}^2-{\beta}^2\right)\left({\left(1-\alpha \right)}^2-{\beta}^2\right)<0. $$

Let ε = α 2 + β 2 − 1, \( \eta = \sqrt{{4\alpha}^{2}-\delta^{2}} \). From (4.49) and (4.50), we haveFootnote 29

C u = 2 β α u + 1 η 1 cos F μ , u , b u { 1 , , τ } , C ̃ τ + 1 = 2 β α τ + 1 cos G μ , τ , b + cos τ𝜃

where

$$ F\left(\mu, u,b\right)\equiv u\arctan\ \left(\eta /\delta \right)+\arctan\ \left(\varepsilon /\eta \right), \vspace*{-18pt} $$
$$ G\left(\mu, \tau, b\right)\equiv \tau \arctan\ \left({\eta}/{\delta}\right)+\arctan\ \left({\varepsilon}/{\eta}\right)+\pi /2=F\left(\mu, \tau, b\right)+\pi /2. \vspace*{-3pt} $$

and arctantakes values in interval π / 2 , π / 2 . Under the assumption0𝜃π/τ and μ ¯ <μ, C τ and C ̃ τ + 1 can be simultaneously positive if and only if

$$ \begin{aligned} F\left(\mu, \tau, b\right) &=\tau\; \mathrm{arctan}\frac{\sqrt{\left(1{-}{\mu}^2\right)\left({\mu}^2{-}{\overline{\mu}}^2\right)}}{\mu^2+\overline{\mu}} \nonumber \\ &\quad +\arctan \frac{\mu^2\left(1+2{b}^2{\tau}^{-2}\overline{\mu}\right){-}\overline{\mu}}{\sqrt{\left(1{-}{\mu}^2\right)\left({\mu}^2{-}{\overline{\mu}}^2\right)}}{\,<\,}\frac{\pi }{2}{\,-\,}\tau \theta . \end{aligned} $$
(4.51)

Note that F μ ¯ , τ , b =π/2, F 1 , τ , b =π/2. Since

$$ -\pi{/}2\le {F}\left(\mu, 1,{b}\right)<{F}\left(\mu, 2,{b}\right)<\dots <{F}\left(\mu, \tau, {b}\right), $$

(4.51) guarantees C 1 >0, C 2 >0, …, C τ 1 >0. Thus, providing that μ> μ ¯ and0𝜃<π/τ, (4.48) holds if and only if

$$ -\pi /2<F\left(\mu, \tau, b\right)<\pi /2-\tau \theta . $$

Let μ τ + 2 τ + 2 b , then μ 2 μ ¯ 2 = 2 1 + b μ ¯ 2 b + τ >0. Thus, differentiating Fwith respect to μ, we have

$$ {F}_{\mu}\left(\mu, \tau, b\right)=\frac{\tau \left({\mu}^{\dagger 2}-{\mu}^2\right)}{\mu \sqrt{\left(1-{\mu}^2\right)\left({\mu}^2-{\overline{\mu}}^2\right)}}>0 $$

for\( \kern0.5em \overline{\mu}<\mu <{\mu}^{\dagger } \). Since F μ , τ , b increase from π/2to F μ , τ , b >π/2as μ increases from μ ¯ to μ , there exists a uniqueμsuch that

$$ \overline{\mu}<\mu <{\mu}^{\dagger },\kern0.5em F\left(\mu, \tau, b\right)=\pi /2-\tau \theta . $$

Let us denote this unique μ by μ (θ, τ, b), then (4.51) is equivalent to μ < μ (θ, τ, b) for \( 0\le \theta < {\pi }/{\tau } \). When \( \theta = {\pi }/{\tau } \), (4.51) is never satisfied, and from the above-mentioned fact, (4.48) is equivalent to \( \mu <\overline{\mu} \). However, by definition we have \( F\left({\mu}^{\ast}\left({\pi}/{\tau },\tau, b\right),\tau, b\right)=-{\pi }/{2} \), hence, \( {\mu}^{\ast}\left({\pi }/{\tau },\tau, b\right)=\overline{\mu} \), and consequently, (4.48) is equivalent to \( \mu < \mu^{\ast}\left(\theta, \tau, b \right) \) for \( 0\le \theta \le {\pi }/{\tau }. \)

(iv) For \( 0\le \theta <{\theta}^{\prime }< {\pi }/{\tau } \), it holds

$$ F\left({\mu}^{\ast}\left({\theta}^{\prime},\tau, b\right),\tau, b\right)={\pi }/{2}-\tau {\theta}^{\prime }< {\pi }/{2}-\tau \theta =F\left({\mu}^{\ast}\left(\theta, \tau, b\right),\tau, b\right), $$

which implies μ (θ′, τ, b) < μ (θ, τ, b).

(v) The first part of this statement directly follows from statement (iii). As for the second part, μ (0, 1, b) and μ (0, 2, b) can be directly calculated from (4.48).

(vi) Let \( {\mu}_1\equiv\sqrt{\frac{\tau \left(1+\tau \right)}{2{b}^2+\left(2b+\tau \right)\left(\tau -1\right)}} \) and \( {\xi}_{1 }\equiv{\left(\frac{b\tau +b}{\tau +b}\right)}^{\frac{1}{\tau }} \), then we have

$$ {\displaystyle \begin{array}{l}F\left({\mu}_1,\tau, b\right)={\pi }/{2}- \mathrm{arctan} \sqrt{\xi^{2\tau}_{1}-1} + \tau\ \mathrm{arctan}\ \tau^{-1}\sqrt{\xi^{2\tau}_{1}-1}\\ {}\qquad \qquad \qquad \ge {\pi }/{2}\ge {\pi }/{2}-\tau\theta =F\left({\mu}^{\ast}\left(\theta, \tau, b\right),\tau, b\right),\end{array}} $$

here we used the fact that x arctan \( a/x \geq \text{arctan}\ a\ \text{holds \ for}\ \text{any} \ x \geq 1 \ \text{ and}\ a > 0\). Hence μ 1(τ, b) ≥ μ (θ, τ, b), where the equality sign holds if and only if τ = 1, θ = 0 (note that \( \mu_1 < \mu^{\dag} \)). Treating τ as a continuous variable and differentiating F with respect to τ, for \( \overline{\mu} < \mu < 1\) we obtain

$$ F_{\tau} (\mu, \tau, b) = \frac{-(1-\mu^{2})(1+b\overline{\mu})}{(b+\tau)\sqrt{(1-\mu^{2}){(\mu^{2}-\overline{\mu}^{2}})}}+ \mathrm{arctan} \frac{\sqrt{(1-\mu^{2})(\mu^{2}-\overline{\mu}^{2})}}{\overline{\mu}+ \mu^{2}}\vspace*{-12pt} $$
$$ < \sqrt{\frac{1-{\mu}^2}{\mu^2-{\overline{\mu}}^2}}\frac{\left(2{b}^2+\left(2b+\tau \right)\left(\tau -1\right)\right)\left({\mu}^2-{\mu}_1^2\right)\ }{\left(b+\tau \right)\left(2b+\tau \right)(\overline{\mu}+ \mu^{2})}. $$

Here we used the fact that arctanx<x for x >0. Assume 0𝜃<π/τ, then μ 1 > μ > μ ¯ , hence F τ <0 at μ= μ . If \( {\mathit{\mu }}^{{}_{\ast}} (\theta, \tau, b) < (\tau + 1)/(2b + \tau + 1) \), then \( {\mathit{\mu }}^{{}_{\ast}} (\theta, \tau, b) < {\mathit{\mu }}^{{}_{\ast}} \left({\pi}/{(\tau+1)}, \tau + 1, b\right) \leq {\mathit{\mu }}^{{}_{\ast}} \left({\tau\theta}/{(\tau + 1)}, \tau + 1, b\right) \). Otherwise, since \( \mu_1 \) is increasing with respect to \( \tau \), we have

$$ F\left({\mu}^{\ast}\left(\theta, \tau, b\right),\tau +1,b\right)<F\left({\mu}^{\ast}\left(\theta, \tau, b\right),\tau, b\right)=\frac{\pi }{2}-\tau \theta \vspace*{-12pt} $$
$$ =\frac{\pi }{2}-(\tau +1)\frac{\tau \theta}{\tau +1}=F\left({\mu}^{\ast}\left(\frac{\tau }{\tau +1}\theta, \tau +1,b\right),\tau +1,b\right). $$

Thus, \( \mu^{\ast} (\theta, \tau, b)<\mu^{\ast}(\tau \theta/(\tau + 1), \tau + 1,b), \) and this holds also for \( \theta = \pi/\tau \).

Next, let μ 2 τ , b τ + 1 / τ + 2 b 1 . Note that F(μ 2(1, b), 1, b) = π/2 holds because μ 0 , 1 , b =1/b= μ 2 1 , b . Since

$$ \begin{aligned} F\left({\mu}_2,\tau, b\right) &=\tau \arctan \frac{2\sqrt{\left(b-1\right)\left(b+2 b\tau +{\tau}^2\right)}}{1+2 b\tau +{\tau}^2}\\ &\quad +\arctan \frac{b+2 b\tau +2{\tau}^2-b{\tau}^2}{2\tau\sqrt{\left(b-1\right)\left(b+2 b\tau +{\tau}^2\right)}}, \end{aligned} $$
$$ \begin{aligned} {F}_{\tau}\left({\mu}_2,\tau, b\right) &=-\sqrt{\frac{b-1}{b+2 b\tau +{\tau}^2}}\frac{2\left(\tau +2b-1+{\tau}^2+ b\tau \right)}{\left(\tau +2b-1\right)\left(\tau +1\right)}\\ & \quad +\arctan \frac{2\sqrt{\left(b-1\right)\left(b+2 b\tau +{\tau}^2\right)}}{1+2 b\tau +{\tau}^2}, \end{aligned} $$
F τb μ 2 , τ , b = b 1 b + 2 + τ 2 τ 1 3 τ 2 + 2 τ + 1 + 2 b 3 τ 2 + τ 1 + 1 b + 2 + τ 2 τ + 2 b 1 2 >0,

we have F τ μ 2 τ , b , τ , b F τ μ 2 τ , 2 , τ , 2 >0 (the last inequality sign can be confirmed by some mechanical calculation). Therefore,

$$ \pi /2={F}\left({\mu}_2\left(1,{b}\right),1,{b}\right)<{F}\left({\mu}_2\left(\tau, {b}\right),\tau, {b}\right), $$

which implies \( \mu_{2}(\tau, b) > \mu^{\ast}(0,\tau, b) \) for \( \tau > 1 \)

(vii) Differentiating Fwith respect to b, we have

$$ {F}_b\left(\mu, \tau, b\right)=\sqrt{\frac{1-{\mu}^2}{\mu^2-{\overline{\mu}}^2}}\frac{\tau \left(1+b\overline{\mu}\right)}{b\left(b+\tau \right)}>0 $$

for μ ¯ <μ<1. Hence, if b< b , then

$$ F\left({\mu}^{\ast}\left(\theta, \tau, {b}^{\prime}\right),\tau, {b}^{\prime}\right)=F\left({\mu}^{\ast}\left(\theta, \tau, b\right),\tau, b\right)<F\left({\mu}^{\ast}\left(\theta, \tau, b\right),\tau, {b}^{\prime}\right), $$

which implies μ (θ, τ, b′) < μ (θ, τ, b).

3. Proof of Theorem 3

(i) By virtue of Theorem 4.2(ii), we can assume 0 ≤ θ ≤ π/τ without losing generality. Let \( {\overline{\psi}}_m\left(\mu, \theta, \tau, b\right) \) denote, for \( m> 0 \), the dominant root of the equation:

$$ {\psi}^{\tau +1}-\left(\frac{b}{\tau}+1\right)m^{-1}\mu {\mathrm{e}}^{\mathrm{i}\theta} {\psi}^{\tau }+ \frac{b}{\tau}m^{-(\tau + 1)}{\mu{e}}^{\mathrm{i}\theta}=0.\vspace*{2pt}$$
(4.52)

Obviously, ψ is a solution of (4.52) if and only if is a solution of (4.24), therefore, \( {\overline{\psi}}_m\left(\mu, \theta, \tau, b\right)\lessgtr 1 \) is equivalent to \( \overline{\phi}\left(\mu, \theta, \tau, b\right)\lessgtr m \). Let

$$ B \equiv b+\tau, M\equiv {m}^{\tau },\alpha \equiv -\frac{B\mu}{\tau m},\beta \equiv \frac{b\mu}{\tau m M}, X \equiv \frac{b}{B}, {\xi}_0\equiv X^{\frac{1}{\tau }}, \vspace*{-9pt}$$
$$ Y \equiv X(1+\tau), \kern0.75em {\mathit{\mu }}^{{}_{\prime}}= \frac{\tau mM}{\mathit{BX}},\kern0.75em {\mu}_{-}\equiv \frac{\tau mM}{B\left(M-X\right)},\kern0.75em {\mu}_{+}\equiv \frac{\tau mM}{B\left(M+X\right)}, \vspace*{-9pt} $$
$$ \tilde{\mu}\equiv\frac{m M}{B}\sqrt{\frac{\tau \left(\tau +2\right)}{M^2-{X}^2}},\kern0.5em {\mu}_0\equiv \frac{m\left(1+\tau \right)}{B},\kern0.5em {\mu}_1\equiv\frac{m\tau M}{B\sqrt{M^2-{Y}^2}}. $$

Note that X<1<Y= b + / b + τ . Define E τ similarly to the case of m=1, then ψ ¯ m <1requires

0<1 β 2 ,0< E τ +2 a τ + 1 βcosτ𝜃 E τ +2 ( a ) τ + 1 β.

By induction, it can be shown that E τ +2 ( a ) τ + 1 βis a product of

$$ \left(1+\alpha +\beta \right)\left(1-\alpha \pm \beta \right)q_\tau{\left(\alpha, \beta \right)}^2, $$

where q τ α , β is a τ-th order polynomial of α,β and the double sign corresponds to odd τand even τ in this order. Since 1α±β>0for β<1, ψ ¯ m <1implies

$$ 1 - \beta =1 - \mu/{\mathit{\mu }}^{{}_{\prime}} > 0,\quad 1+\alpha +\beta =1 - \mu{/}{\mathit{\mu}}_{-} >0 $$

By the Gauss’ theorem about the bound on the solution of an algebraic equationFootnote 30, ψ ¯ m <1also requires μ< μ 0 . Since μ μ 0 =m M Y / B M X , μ 0 becomes more restrictive than \( \mu_- \) when ξ 0 < ξ 1 <m.

Like the case of ϕ ¯ μ , 𝜃 , τ , b , if μ< μ + , then 1+αβ>0, which ensures ψ ¯ m <1. If μ + <μ< μ , then 1+αβ<0, and ψ ¯ m <1 holds if and only if 1+α+β>0and π/2< F m μ , τ , b <π/2τ𝜃(hence 𝜃<π/τ), where

$$ {F}^m\left(\mu, \tau, b\right)=\tau \arctan H/{G}_1+\arctan {G}_2/H,\kern0.5em {G}_1\equiv 1+{\alpha}^2-{\beta}^2>0, \vspace*{-8pt} $$
$$ {G}_2\equiv {\alpha}^2+{\beta}^2-1,H\equiv \sqrt{-\left({\left(1+\alpha \right)}^2-{\beta}^2\right)\left({\left(1-\alpha \right)}^2-{\beta}^2\right)}>0. $$

Note that \( \mu_+ < {\mathit{\mu }}^{{}_{\prime}} \) and \( F^m (\mu_+, \tau, b) = \pi/2 \) for any \( m >0 \). Let F μ m be the partial derivative of F m with respect to μ. If MX, then 1+α+β>0, \( F^m ({\mathit{\mu}}^{{}_{\prime}}, \tau, b) \geq \pi/2 \), and

$$ {F}_{\mu}^m\left(\mu, \tau, b\right)=\frac{m^2{\tau}\left(\tau +2\right){M}^2-{B}^2\left({M}^2-{X}^2\right){\mu}^2}{\mu \tau m^2 M^2H}>0. $$

If M>X, then 1+α+β>0is equivalent to μ< μ , and by definition, we have μ ̃ 2 μ + 2 = 2 τ m 2 M 2 M + Y B 2 M + X 2 M X >0. Accordingly,

$$ {F}_{\mu}^m\left(\mu, \tau, b\right)= {B}^2\left({M}^2-{X}^2\right)\left(\tilde{\mu}^2-{\mu}^2\right)/\left(\mu \tau m^2 M^2H\right)>0 $$

for μ + < μ < μ ̃ . Since G 2 μ = 2 MX ( M X ) 2 >0, we have \( {\mathit{F}}^{\mathit{m}}\left({\mathit{\mu }}_{ - },\mathit{\tau },\mathit{b}\right) = \mathit{\pi }/2. \) Therefore, there exists a unique μsuch that \( \mu_+ \leq \mu \leq \mu^\prime \mbox{ for } M \leq X, {\mathit{\mu }}_{ + } \leq \mathit{\mu } \leq \min\left\{{\mathit{\mu }}_{ - },\tilde{\mu}\right\} \mbox{ for } X < M, \mbox{ and }\)

$$ {\mathit{F}}^{\mathit{m}}\left(\mathit{\mu },\mathit{\tau },\mathit{b}\right) + \mathit{\tau \theta } = \mathit{\pi }/2.$$

Let us denote this unique μby μ m 𝜃 , τ , b , then μ m π / τ , τ , b = μ + ; therefore, like the case of m=1, ψ ¯ m μ , 𝜃 , τ , b <1 is equivalent to μ< μ m 𝜃 , τ , b .

Because of the continuity of ψ ¯ m with respect to its arguments, μ= μ m 𝜃 , τ , b is equivalent to ϕ ¯ μ , 𝜃 , τ , b =m. Assume μ< μ <1 and ϕ ¯ μ , 𝜃 , τ , b =m, then μ< μ = μ m 𝜃 , τ , b , which implies ϕ ¯ μ , 𝜃 , τ , b <m= ϕ ¯ μ , 𝜃 , τ , b .Footnote 31

(ii) Assume \( 0\le \theta <{\theta}^{\prime}\le {\pi }/{\tau } \) and \( \overline{\phi}\left(\mu, {\theta}^{\prime},\tau, b\right)=m \). Then, since

$$ {F}^{m}\left(\mu, \tau, b\right)={\pi }/{2}-{\theta}^{\prime}\tau <{\pi }/{2}-\theta \tau, $$

we have \( \overline{\phi}\left(\mu, \theta, \tau, b\right)<m=\overline{\phi}\left(\mu, {\theta}^{\prime},\tau, b\right). \)

(iii) Assume m > ξ 0 \( (M >X)\) and \( Z \equiv X\sqrt{2\tau+1}. \) Note that \( X < Z < Y. \) Differentiating F m with respect to \( \tau \), we have

$$ {F}_{\tau}^m\left(\mu, \tau, b\right)=\frac{K_1+B{K}_2\log m}{m^2 \tau^2 M^2 BH}+\arctan \frac{H}{G_1}, \vspace*{-6pt}$$
$$ {K}_1\equiv {\mu}^2\left(\left(1+b\right){B}^2{M}^2-{b}^2\left(1+\tau +B\right)\right)-\left(B+b+ b\tau \right)\tau {m}^2{M}^2, \vspace*{-6pt} $$
$$ {K}_2\equiv {B}^2\left({M}^2-{Z}^2\right){\mu}^2-{m}^2{\tau}^2{M}^2. $$

First, we consider the case X<M<Y. If MZ, then K 2 <0. Assume Z<M<Y, then since μ 1 2 μ 2 = 2 τ 2 m 2 M 2 Y M B 2 M X 2 M 2 Z 2 >0,we have

$$ {K}_2={B}^2\left({M}^2-{Z}^2\right)\left({\mu}^2-{\mu}_1^2\right)<0 $$

for μ< μ . Therefore, in these cases, we have

$$ {F}_{\tau}^m\left(\mu, \tau, b\right)<\frac{K_{\mathrm{1}}}{m^2\tau^2 M^2 BH}+\frac{H\ }{G_1}=-\frac{L_1\left({\mu}^2-{\mu}_2^2\right)\left({\mu}^2-{\mu}_3^2\right)}{m^4\tau^4M^4G_1 H}, \vspace*{-9pt}$$
$$ {L}_1\equiv {B}\left(\left(\tau -1\right){B}{M}^2+{b}^2\left(1+\tau \right)\right)\left({M}^2-{X}^2\right)>0, \vspace*{-9pt} $$
μ 2 τm M τ + 1 τ 1 B 2 M 2 + b 2 τ + 1 , μ 3 mM τ ( b + B ) B M 2 X 2 .

Because μ 0 2 μ 2 2 = τ + 1 m 2 B 2 Y 2 M 2 τ 1 M 2 B 2 + b 2 τ + 1 , μ 3 2 μ 0 2 = m 2 Y 2 M 2 + 2 M 2 τ b 1 B 2 M 2 X 2 , and \( \mu_0 - \mu_{-} = \frac{m(M-Y)}{B(M-X)}\), we obtain μ 2 <min{ μ , μ 3 }, hence F τ m <0for μ< μ 2 . On the other hand, since

$$ {F}^m\left({\mu}_2,\tau, b\right)=\frac{\pi }{2}+\tau \arctan \frac{\sqrt{Y^2-{M}^2}}{\tau M}\hbox{--} \arctan \frac{\sqrt{Y^2-{M}^2}}{M}, $$

we have F m μ 2 , τ , b >π/2π/2τ𝜃= F m μ m 𝜃 , τ , b , τ , b , which implies μ m 𝜃 , τ , b < μ 2 . Therefore, F τ m μ , τ , b <0at μ= μ m 𝜃 , τ , b .

Next, we turn to the case Y<M. In this case, it follows that μ 1 μ μ 0 μ 2 .If μ< μ 1 , then K 2 <0 because Z<YM, hence F τ m <0. If μ 1 μ< μ , then K 2 0 and 0<logmm1because 1<YM. Thus,

$$ {F}_{\tau}^m<\frac{K_1+\left(m-1\right)B{K}_2}{m^2\tau^2M^2 BH}+\frac{H}{G_1}=\frac{L_2\left(\mu \right)}{m^2{\tau}^2{M}^2{G}_1H}, \vspace*{-9pt}$$
$$ {L}_2\left(\mu \right)\equiv -{L}_1\left({\mu}^2-{\mu}_2^2\right)\left({\mu}^2-{\mu}_3^2\right)+ \left(m-1\right)G_1{K}_2. $$

Since μ 3 2 μ 2 = 2 m 2 M 2 M 1 B 2 M 2 X 2 M X 2 , we have μ 1 μ <min{ μ 2 , μ 3 }. Therefore, L 2 μ is increasing in μ 1 μ< μ . Hence,

$$ {L}_2\left(\mu \right)\le {L}_2\left({\mu}_{-}\right)=-\frac{4b\tau m^2 M^3\left({m}^{\tau }- m\tau +\left(\tau -1\right)\right)\left(M-Y\right)}{B{\left(M-X\right)}^3}\le 0, $$

where the second inequality sign holds because

$$ {m}^{\tau }- m\tau +\left(\tau -1\right)={\left(m-1\right)}^2\sum_{j=1}^{\tau -1}j{m}^{\tau -1-j}>0 \vspace*{-8pt} $$

for m>1,τ2. Consequently, F τ m <0holds for any μ< μ . Hence, in this case also F τ m μ , τ , b <0at μ= μ m 𝜃 , τ , b .

In sum, F τ m μ , τ , b <0 at μ= μ m 𝜃 , τ , b for anym> ξ 0 , and it also holds for any \( \mu <\mu_2 \) (when \( X < M < Y\)) and \( \mu < \mu_{-}\) (when \( Y \leq M \)). Let ϕ ¯ μ , 𝜃 , τ , b =m> ξ 0 . Then, since μ= μ m 𝜃 , τ , b and both \( \mu_2 \) and \( \mu_{-} \) are increasing with respect to \( \tau \) in their relevant ranges, we have

$$ {F}^m\left(\mu, \tau +1,b\right)<{F}^m\left(\mu, \tau, b\right)=\frac{\pi }{2}-\tau \theta =\frac{\pi }{2}-\left(\tau +1\right)\frac{\tau \theta}{\tau +1}, $$

which implies ϕ ¯ μ , τ𝜃 / τ + 1 , τ + 1 , b <m= ϕ ¯ μ , 𝜃 , τ , b .

(iv) Differentiating F m with respect to b, we have

$$\mathit{F}_{\mathit{b}}^{\mathit{m}}\left(\mathit{\mu },\mathit{\tau },\mathit{b}\right) = \mathit{P}\left(\mathit{\mu }\right){/}(\mathit{bB}\tau m^2{\mathit{M}}^{2}\mathit{H}), \hspace*{0.5em}\mathit{P}\left(\mathit{\mu }\right)\equiv {\mathit{N}}_{1} + {\mathit{\mu }}^{2}{\mathit{N}}_{2}, \vspace*{-3pt}$$

N 1 τ m 2 M 2 B + + b , N 2 1 + b B 2 M 2 + b 2 B + τ + 1 .

Considering that the sign of μ 0 μ is equal to that of MY, and

$$ P\left({\mu}_{+}\right)=2b {\tau} m^2 M^2\left(1+M\right)\left({M}+{Y}\right)/{\left(M+X\right)}^2>0, \vspace*{-10pt} $$
$$ P\left({\mu}_0\right)=-\left(1+\tau +B\right){m}^2\left({M}^2-{Y}^2\right),\vspace*{-10pt} $$
$$ P\left({\mu}_{-}\right)=2b\tau m^2 M^2\left(M-1\right)\left({M}-{Y}\right)/{\left(M-X\right)}^2, $$

F b m >0 holds for μ + <μ<min μ 0 , μ . Let ϕ ¯ μ , 𝜃 , τ , b =m, then since \( \mu = \mu_m^* (\theta, \tau, b^\prime) \) and both \( \mu_2 \) and \( \mu_- \) are increasing with respect to \( \tau \) in their relevant ranges, we have

$${\mathit{F}}^{\mathit{m}}\left(\mathit{\mu },\mathit{\tau },\mathit{b}\right)< {\mathit{F}}^{\mathit{m}}\left(\mathit{\mu },\mathit{\tau },{\mathit{b}}^{{\prime}}\right) = \mathit{\pi }/2 - \mathit{\tau \theta }, $$

which implies ϕ ¯ μ , 𝜃 , τ , b <m= ϕ ¯ μ , 𝜃 , τ , b .

4. Proof of Theorem 4

(i) To prove the contraposition of statement (i), let us assume ρ(Ψ) ≥ 1. Let ψ be an eigenvalue of Ψ such that |ψ| ≥ 1 and ξ = [ξ I, ξ II] be an associated eigenvector, where both ξ I and ξ II are 1 × n vectors. Then, from ψξ = ξ Ψ we obtain

$$ \xi =\left[{\xi}_{\mathrm{I}},{\xi}_{\mathrm{I}}\Gamma {\left(\psi I-\left(I-\Gamma \right)\right)}^{-1}\right],\kern0.5em {\psi \xi}_{\mathrm{I}}={\xi}_{\mathrm{I}}Q\left(\psi \right)A \vspace*{-12pt}$$
$$ Q\left(\psi \right) \equiv\left(I+\Gamma B\right)-\Gamma {\left(\psi I-\left(I-\Gamma \right)\right)}^{-1}\Gamma B. $$

Therefore, ψ is also an eigenvalue of matrix Q(ψ)A, hence 1 ≤ |ψ| ≤ ρ(Q(ψ)A). Let q i be the i-th diagonal element of matrix Q(ψ), then

$$ \left|{q}_i\right|=\left|1+{\gamma}_i{b}_i-\frac{\gamma_i^2{b}_i}{\psi -\left(1-{\gamma}_i\right)}\right|=\left(1+{\gamma}_i{b}_i\right)\left|\frac{\psi -\frac{1-{\gamma}_i+{\gamma}_i{b}_i}{1+{\gamma}_i{b}_i}}{\psi -\left(1-{\gamma}_i\right)}\right|\le \frac{2{-}{\gamma}_i+2{\gamma}_i{b}_i}{2{-}{\gamma}_i}. $$

Since Q is diagonal and A is nonnegative, we have

$$ {(QA)}^{+}\le {Q}^{+}A\le \left(2\Gamma B{\left(2I-\Gamma \right)}^{-1}+I\right)A. $$

Because ψ is an eigenvalue of QA, these inequalities imply

$$ {\displaystyle \begin{array}{c}1\le \rho (QA)\le {\lambda}^{\mathrm{F}}\left({(QA)}^{+}\right)\le {\lambda}^{\mathrm{F}}\left({Q}^{+}A\right)\\ {}\le {\lambda}^{\mathrm{F}}\left(\left(2\Gamma B{\left(2I-\Gamma \right)}^{-1}+I\right)A\right)\end{array}}\vspace*{-7pt} $$

(ii) To prove the contraposition of statement (ii), assume that –λ F(A) is an eigenvalue of A and \( \lambda^* = \lambda^{\rm F} ((2\Gamma B(2I - \Gamma)^{-1} + I)A) \geq 1 \). Let ψ ≠ 0, then ψ is an eigenvalue of Ψ if and only if

$$ \left|\psi I-Q\left(\psi \right)A\right|=0.\vspace*{-4pt} $$

For any ψ > 0, matrix Q(−ψ)A is nonnegative and identically cyclic with matrix A. Hence, −λ F(Q(−ψ)A) is an eigenvalue of Q(−ψ)A. Let

$$ h\left(\psi \right) \equiv \psi -{\lambda}^{\mathrm{F}}\left(Q\left(-\psi \right)A\right)\ $$

for ψ > 0, then h(ψ) is an eigenvalue of ψI + Q(−ψ)A =  − ((−ψ)I − Q(−ψ)A). Hence, h(ψ) = 0 implies that −ψ is an eigenvalue of Ψ. Since \( Q(-\lambda^\ast) \leq Q(-1) \), we obtain \( \lambda^{\mathrm{F}} (Q(-\lambda^\ast)A) \leq \lambda^{\mathrm{F}} (Q(-1)A) = \lambda^\ast \). Consequently,

$$ h(1)=1-{\lambda}^{\mathrm{F}}\left(Q\left(-1\right)A\right)=1-{\lambda}^{\ast}\le 0,\vspace*{-12pt} $$
$$ h\left({\lambda}^{\ast}\right)={\lambda}^{\ast }-{\lambda}^{\mathrm{F}}\left(Q\left(-{\lambda}^{\ast}\right)A\right)\ge 0. $$

Because of the continuity, there exists an α such that

$$ 1\le \alpha \le {\lambda}^{\ast },\kern0.5em h\left(\alpha \right)= \alpha -{\lambda}^{\mathrm{F}}\left(Q\left(-\alpha \right)A\right)=0. $$

Therefore, −α is an eigenvalue of Ψ, hence ρ(Ψ) ≥ 1.

5. Proof of Theorem 5

(i) Like the case of \( \Phi^\prime \), the characteristic equation of \( \Psi^\prime\) is

$$ \prod \limits_{i=1}^{\nu }{\left({\psi}^2I-\psi \left(\left(\gamma b+1\right){\lambda}_i+\left(1-\gamma \right)\right)+\left(1-\gamma +\gamma b\right){\lambda}_i\right)}^{\kappa_i}=0, \vspace*{-2pt} $$

where ν is the number of A’s different eigenvalues and κ i is the multiplicity of an eigenvalue λ i = \( {\mu}_i{\mathrm{e}}^{\mathrm{i}{\theta}_i} \). Therefore, ρ \( (\Psi^\prime) < 1 \) is equivalent to \( \overline{\psi}\left({\mu}_i,{\theta}_i,\gamma, b\right)<1 \) for any i ∈ {1, …, ν}.

(ii) Let ξeiω = ξ(cosω + i sin ω) (0 ≤ ξ, 0 ≤ ω < 2π) be a root of (4.33), then

$$ {\xi}^2{\mathrm{e}}^{2\mathrm{i}\omega }-\left(\left(\gamma b+1\right)\mu {\mathrm{e}}^{\mathrm{i}\theta }+\left(1-\gamma \right)\right)\xi {\mathrm{e}}^{\mathrm{i}\omega }+\left(1-\gamma +\gamma b\right)\mu {\mathrm{e}}^{\mathrm{i}\theta }=0. \vspace*{-2pt} $$

Let f(ξ, ω, θ) be the left-hand side of this equation; then f(ξ, −ω, −θ) = 0, because it is the conjugate of f(ξ, ω, θ). Therefore, \( \overline{\psi}\left(\mu, \theta, \gamma, b\right)=\overline{\psi}\left(\mu, -\theta, \gamma, b\right) \).

(iii) From Schur’s condition, ψ ¯ μ , 𝜃 , γ , b <1 holds if and only if

E 1 1 D μ e i θ D μ e i θ 1 = 1 D 2 μ 2 > 0 , E 2 1 B μ e i θ + C D μ e i θ 0 0 1 B μ e i θ + C D μ e i θ D μ e i θ B μ e i θ + C 1 0 0 D μ e i θ B μ e i θ + C 1 > 0 ,
(4.53)

where B1+γb,C1γ,D1γ+γb. Note that

$$ B- CD=\gamma \left(B+C\right)>0,\kern0.75em BC-D=-{\gamma}^2b<0,\vspace*{-12pt} $$
$$ B-C=\gamma \left(b+1\right)>0,\kern1em B-D=1-C=\gamma, \kern0.75em 1-D=-\gamma \left(b-1\right)<0, $$

and E 1 > 0 is equivalent to  = (1 − γ + γb)μ < 1. Let

$$ {\mu}_1=\sqrt{\frac{C}{BD}},{\mu}_2=\frac{1+C}{B+D}=\frac{2-\gamma }{2-\gamma +2\gamma b},{\mu}_3=\frac{1}{D}=\frac{1}{1-\gamma +\gamma b}, $$

then μ 1 < μ 2 < μ 3 because

$$ {\mu}_2^2-{\mu}_1^2=\frac{\gamma^3b\left(B+C\right)}{BD{\left(B+D\right)}^2}>0,{\mu}_3-{\mu}_2=\frac{\gamma \left(D+1\right)}{D\left(B+D\right)}>0. $$

By direct calculation, we have

$$ {E}_2=F\left(\mu \right)-\left(1-\cos \theta \right)G\left(\mu \right), \vspace*{-12pt} $$
$$ F\left(\mu \right)=\gamma D^2\left(1-\mu \right){\left({\mu}_{3}-\mu \right)}^2\left(1+C+\mu \left(B+D\right)\right)\ge 0, \vspace*{-12pt} $$
$$ G\left(\mu \right)=2\mu \left( BD{\mu}^2-C\right)\left(B- CD\right)=2\gamma \mu \left(B+C\right) BD\left({\mu}^2-{\mu}_1^2\right). $$

Let H μ =F μ /G μ , then H μ 2 =2,H μ 3 =0. Differentiating H with respect to μ, we have

$$ {H}_{\mu }=\frac{\left({\mu}_3^2-{\mu}^2\right)K\left(\mu \right)}{2{\mu}^2 B^2{\left({\mu}^2-{\mu}_1^2\right)}^2\left(B+C\right)}, \vspace*{-6pt} $$
$$ K\left(\mu \right)\equiv BD\left(B+D\right){\mu}^4-\left(3D- BC\right)\left(B+C\right){\mu}^2+C\left(1+C\right). $$

Since G μ has the same sign as that of μ μ 1 , E 2 >0 is equivalent to either μ μ 1 or μ 1 <μ, H μ >1cos𝜃.K μ is a quadratic expression of μ 2 and

$$ K\left({\mu}_1\right)=-2b{\gamma}^2C\left(B+C\right)/(BD)<0,\kern0.75em K\left({\mu}_3\right)=-\gamma \left(b-1\right)P/{D}^3<0, $$

where P B + C B + 2 D + CD . Thus, H μ is decreasing in μ 1 <μ< μ 3 . Hence, there exists a uniqueμsuch that μ 2 μ μ 3 and H μ =1cos𝜃. Let μ 𝜃 , γ , b be this uniqueμ, then (4.53) is equivalent to μ< μ 𝜃 , γ , b .

(iv) From the above results, for 0 < θ < θ′ ≤ π we have

$$ H\left({\mu}^{\ast}\left(\theta, \gamma, b\right)\right)=1-\cos \theta <1-\cos {\theta}^{\prime}, $$

which implies μ 𝜃 , γ , b < μ 𝜃 , γ , b . The latter part of the statement directly follows from H μ 2 =2,H μ 3 =0.

(v) This statement directly follows from statement (iii).

(vi) Assume γ < γ′ < 1. Differentiating H with respect to γ, we have

$$ H_{\gamma}=\frac{\left(1-{\mu}^2\right)\left({\mu}_3^2-{\mu}^2\right)L\left(\mu \right)}{2\mu {\left(B+C\right)}^2 B^2\left({\mu}^2-{\mu}_1^2\right)},L\left(\mu \right)\equiv{P}_1-{\mu}^2{P}_2, \vspace*{-16pt}$$
$$ {P}_1=2\left(b-2\right)-\left(b-1\right)\gamma \left(4-\gamma \right), \vspace*{-16pt} $$
$$ {P}_2=2\left(b-2\right)+4\gamma {\left(b-1\right)}^2+{\gamma}^2\left(b-1\right)\left(1+2b\left(b-1\right)\right)>0, \vspace*{2pt} $$

Note that the sign of \( {H}_{\gamma } \) is the same as that of L(μ) for μ 2 < μ < μ 3. From

$$ L\left({\mu}_3\right)<L\left(\mu \right)<L\left({\mu}_2\right)=-\frac{2\gamma b\left(B+C\right)\left({\left(\gamma -2\right)}^2+\gamma b\left(4-\gamma \right)\right)}{{\left(B+D\right)}^2}<0, \vspace*{2pt}$$

we have \( {H}_{\gamma }<0 \) for μ 2 < μ < μ 3. Assume \( \mu = \mu^\ast (\theta, \gamma,b) \) and \( 0 \leq \theta < 2\pi \). If \( \mu_3 (\gamma^\prime) =1/(1-\gamma^\prime+ \gamma^{\prime} b) < \mu \), then \( \mu^\ast (\theta, \gamma^\prime, b) \leq \mu^\ast (0, \gamma^\prime, b) \leq \mu^\ast (\theta, \gamma, b) \). Otherwise, since

$$ 1-\cos \theta =H\left(\mu, \gamma, b\right)>H\left(\mu, \gamma^\prime, b\right), $$

we have μ (θ, γ, b) = μ > μ (θ, γ′, b), and this also holds for θ = 0.

(vii) Differentiating H with respect b, we have

$$ {H}_{b}=\frac{\gamma \left(1-{\mu}^2\right)\left({\mu}_3^2-{\mu}^2\right)M(\mu)}{2\mu {\left(B+C\right)}^2 B^2\left({\mu}^2-{\mu}_1^2\right)},M\left(\mu \right)\equiv{Q}_1-{\mu}^2{Q}_2,\vspace*{-8pt} $$
$$ Q_{1} \equiv \left(\gamma -1\right)\left(\gamma -2\right),\kern0.5em Q_{2} \equiv 2 + (1+4b)\gamma + (2b^2 + 2b -3)\gamma^2 + (b-1)^2\gamma^3. \vspace*{2pt} $$

Considering that

$$ M\left({\mu}_2\right)=-\frac{\gamma(2-\gamma)(B+C){\left({\left(\gamma -2\right)}^2+\gamma b\left(4-\gamma \right)\right)}^2}{(B+D)^2}<0, $$

we can apply the same argument as the case of (vi).

6. Proof of Theorem 6

(i) B, C, and D are the same as those in the proof of the previous theorem, and let \( \overline{\phi}_{m}\left(\mu, \theta, \tau, b\right) \) be the dominant root of the equation:

$$ {\phi}^2-{m}^{-1}\left( B\mu {\mathrm{e}}^{\mathrm{i}\theta }+C\right)\phi +{m}^{-2} D\mu {\mathrm{e}}^{\mathrm{i}\theta }=0. $$

Then, it follows that \( \overline{\psi}\left(\mu, \theta, \gamma, b\right)=m\overline{\phi}_m\left(\mu, \theta, \gamma, b\right). \) Let

$$ \kern0.5em {\psi}_0\equiv\sqrt{\frac{CD}{B}},\enspace {\mu}_0\equiv\frac{C}{B}=\frac{1-\gamma }{1+ b\gamma},\kern0.37em {\mu}_{\mathrm{I}}\equiv m \sqrt{\frac{C}{BD}}, \vspace*{-12pt}$$
$$ {\mu}_{\mathrm{I}\mathrm{I}}\equiv\frac{m\left(m+C\right)}{mB+D},\enspace {\mu}_{\mathrm{III}} \equiv \frac{m^2}{D},\enspace {\mu}_{\mathrm{IV}}\equiv\frac{m\left(m-C\right)}{mB-D} $$

As before, by Schur’s condition, ϕ ¯ m μ , 𝜃 , γ , b <1 holds if and only if

$$ \begin{aligned}&\mu <{\mu}_{\mathrm{III}},\kern0.5em {F}^m\left(\mu \right)-\left(1-\mathit{\cos}\theta \right){G}^m\left(\mu \right)>0,\\& {G}^m\left(\mu \right)\equiv 2\mu {m}^{-6}{B}^2D\left({m}^2-{\psi}_0^2\right)\left({\mu}^2-{\mu}_{\mathrm{I}}^2\right),\\&{F}^m\left(\mu \right)\equiv {m}^{-8}{D}^2\left({m}^2{B}^2-{D}^2\right){\left({\mu}_{\mathrm{I}\mathrm{I}\mathrm{I}}-\mu \right)}^2\left({\mu}_{\mathrm{I}\mathrm{I}}+\mu \right)\left({\mu}_{\mathrm{I}\mathrm{V}}-\mu \right)\end{aligned} $$
(4.54)

By the assumption μ μ 0 , it is sufficient to consider the case m μ 0 D = ψ 0 .Assume m> ψ 0 and let r m B m 2 CD,s(m) m 2 B 2 D 2 , then from

$$ {\mu}_{\mathrm{I}}^2-{\mu}_0^2=\frac{Cr(m)}{BD}>0,\kern0.5em {\mu}_{\mathrm{I}\mathrm{I}}^2-{\mu}_{\mathrm{I}}^2=\frac{m^2{\gamma}^2 br(m)}{BD{\left( mB+D\right)}^2}>0,\vspace*{-6pt} $$
$$ {\mu}_{\mathrm{II}\mathrm{I}}-{\mu}_{\mathrm{II}}=\frac{m r(m)}{D\left( mB+D\right)}>0,\kern0.5em {\mu}_{\mathrm{IV}}-{\mu}_{\mathrm{II}}=\frac{2m^2{\gamma}^2b}{s(m)}, \vspace*{-6pt} $$
$$ {\mu}_{\mathrm{IV}}^2-{\mu}_{\mathrm{III}}^2=-\frac{m^2 r(m)q(m)}{D^2{\left( mB-D\right)}^2},\kern0.5em q(m)\equiv {m}^2B-2 mD+ \mathit{CD}, $$

we have μ 0 < μ I < μ II < μ III . If μ μ I ,mB>D, then μ< μ I < μ II < μ IV . If μ μ I ,mB<D, then μ IV <0. Hence, (4.54) holds when μ μ I .

Assume μ> μ I , then G m μ >0. Sinceq 0 >0 and q D / B = γ 2 bD/B<0, equationq m =0has two positive roots. Let ψ I be its larger root, then D/B<1< ψ I because q 1 = b 1 γ 2 <0. Observe that q ψ 0 =2D C ψ 0 <0; μ III <| μ IV | for ψ 0 <m< ψ I ; and μ II < μ VI < μ III for ψ I <m. Let H m μ = F m μ / G m μ , then

$$ {H}^m\left({\mu}_{\mathrm{II}}\right)=2,\kern0.75em {H}^m\left({\mu}_{\mathrm{II}\mathrm{I}}\right)={H}^m\left({\mu}_{\mathrm{VI}}\right)=0. $$

Differentiating H m with respect to μ, we have

$$ {H}_{\mu}^m=\frac{\left({\mu}_{\mathrm{I}\mathrm{II}}^2-{\mu}^2\right)K\left(\mu \right)}{2{m}^2{\mu}^2{B}^2{\left({\mu}^2-{\mu}_{\mathrm{I}}^2\right)}^2r(m)}, $$
$$ K\left(\mu \right)\equiv BD s(m) {\mu}^4-{m}^2\left(3D- BC\right)r(m){\mu}^2+{m}^4C\left({m}^2-{C}^2\right). $$

Let p m m 2 B+2mD+CD. K μ is a quadratic expression of μ 2 , and

$$ K\left({\mu}_{\mathrm{I}}\right)=-2b{\gamma}^2{m}^4 Cr(m)/(BD),\kern1em {K}\left({\mu}_{\mathrm{I}\mathrm{II}}\right)={m}^4 r(m)p(m)q(m)/{D}^3, \vspace*{-12pt} $$
$$ {K}\left({\mu}_{\mathrm{IV}}\right)=-2b{\gamma}^2{m}^4 \left(m-C\right)r(m)q(m)/{\left( mB-D\right)}^3. $$

Hence, if ψ 0 <m< ψ I , then μ I <μ< μ III < μ IV and K m μ <0in μ I <μ< μ III ; if ψ I <m, then μ I <μ< μ IV < μ III and K m μ <0in μ I <μ< μ IV . Thus, H μ m <0 in μ I <μ<min μ III , | μ IV | , so there exists a uniqueμsuch that

$$ {\mu}_{\mathrm{II}}\le \mu \le \min \left\{{\mu}_{\mathrm{II}\mathrm{I}},|{\mu}_{\mathrm{IV}}|\right\},{H}^m\left(\mu \right)=1-\cos \theta . $$

Let us denote this uniqueμby μ m 𝜃 , γ , b , then, it satisfies

$$ {\mu}_m^{\ast}\left(0,\gamma, b\right)=\left\{\begin{array}{l}{\mu}_{\mathrm{I}\mathrm{I}\mathrm{I}}\kern1em {\psi}_0<m\le {\psi}_{\mathrm{I}},\\ {\mu}_{\mathrm{I}\mathrm{V}}\kern1em {\psi}_{\mathrm{I}}<m\end{array}\right.,\kern0.5em {\mu}_m^{\ast}\left(\pi, \gamma, b\right)={\mu}_{\mathrm{I}\mathrm{I}}, $$

and (4.54) is simplified into μ< μ m 𝜃 , γ , b .

Assume μ 0 <μ< μ <1. Let m= ψ ¯ μ , 𝜃 , γ , b then m> ψ 0 γ , b , hence μ = μ m 𝜃 , γ , b , which implies ψ ¯ μ , 𝜃 , γ , b <m= ψ ¯ μ , 𝜃 , γ , b . Footnote 32

(ii) If m= ψ 0 , then μ 0 = μ I = μ II = μ III and ψ ¯ μ , 𝜃 , γ , b < ψ 0 is equivalent to μ< μ 0 , which implies that ψ= ψ 0 holds irrespective of 𝜃when μ= μ 0 .

Assume \( \mu_0 < \mu, 0\leq \theta < \theta^\prime \leq \pi \), and \( \psi\left(\mu, {\theta}^{\prime},\gamma, b\right)=m \).

Then, it follows that

$$ {H}^m\left(\mu, \gamma, b\right)={H}^{m}\left(\mu_m^\ast \left(\mathit{\theta^\prime },\mathit{\gamma },\mathit{b}\right), \gamma, b\right) = 1-\cos {\theta}^{\prime }>1-\cos \theta, $$

which implies \( \overline{\phi}\left(\mu, \theta, \gamma, b\right)<m=\overline{\phi}\left(\mu, {\theta}^{\prime},\gamma, b\right). \)

(iii) Differentiating H m with respect γ, we have

$$ {H}_{\gamma}^m=-\frac{\left({\mu}_{\mathrm{I}\mathrm{II}}^2-{\mu}^2\right)L\left(\mu \right)}{2\mu {m}^2{B}^2{r}^2(m){\left({\mu}^2-{\mu}_{\mathrm{I}}^2\right)}^2},\kern0.75em L\left(\mu \right)\equiv {S}_1{\mu}^4+2{S}_2{m}^2{\mu}^2+{S}_3{m}^4,\vspace*{-6pt} $$
$$ {S}_1\equiv \left(b-1\right){B}^4{m}^4-2B{D}^2\left( bB-1\right){m}^2+{D}^3\left( bB-C\right), \vspace*{-12pt} $$
$$ {S}_2\equiv - B\Big(B\left(b-1\right)-\gamma b\Big)\ {m}^4+ BC\left(b-1\right)\left(3D- BC\right){m}^2-C{D}^2\left(b-C\right),\vspace*{-12pt} $$
$$ {S}_3\equiv \left( bC-B\right){m}^4-2C\left( bC-D\right){m}^2+{C}^4\left(b-1\right). $$

Note that L μ is a quadratic expression of μ 2 . Since

$$ L\left({\mu}_{\mathrm{II}}\right)=-2{b}^2{\gamma}^2{m}^4{\left(1+m\right)}^2{r}^2(m)p(m)/{\left( mB+D\right)}^4,\vspace*{-10pt} $$
$$ \vspace*{-12pt}L\left({\mu}_{\mathrm{III}}\right)=\left(b-1\right){m}^4 {r}^2(m)p(m)q(m)/{D}^4, $$
$$ L\left({\mu}_{\mathrm{IV}}\right)=-2{b}^2{\gamma}^2{m}^4{\left(m-1\right)}^2{r}^2(m)q(m)/{\left( mB-D\right)}^4, $$

H γ m <0 holds for μ II <μ<min μ III , | μ IV | . Assume μ 0 γ , b μ,γ< γ 1, and let ψ ¯ μ , 𝜃 , γ , b =m, that is μ= μ m 𝜃 , γ , b . Then, applying the same argument as in the proof of Theorem 5(vi), we have

$$ 1-\cos \theta ={H}^m\left(\mu, {\gamma}^{\prime },b\right)<{H}^m\left(\mu, \gamma, b\right), $$

which implies ϕ ¯ μ , 𝜃 , γ , b <m= ϕ ¯ μ , 𝜃 , γ , b .

(iv) Differentiation H m with respect to b, we have

$$ {H}_b^{m}=\frac{-\gamma \left({\mu}_{\mathrm{I}\mathrm{II}}^2-{\mu}^2\right){M}_m\left(\mu \right)}{2{\mu}{m}^2{B}^2 r^2(m) {\left({\mu}^2-{\mu}_{\mathrm{I}}^2\right)}^2},\kern0.5em {M}_m\left(\mu \right) \equiv {T}_1{\mu}^4+{T}_2{m}^2{\mu}^2+{T}_3{m}^4, \vspace*{-6pt} $$
$$ {T}_1 \equiv {B}^4{m}^4+{BD}^2\left(\gamma B-2D\right){m}^2+{CD}^3\left(B+\gamma \right)\vspace*{-12pt} $$
$$ {T}_2 \equiv -B\left(2D+\gamma B\right){m}^4+2 BC\left(3D- BC\right){m}^2-{C}^2{D}^2\left(2+\gamma \right),\vspace*{-12pt} $$
$$ {T}_3 \equiv {Cm}^4-{C}^2\left(C+1\right){m}^2+{C}^4. $$

Note that M μ is a quadratic expression of μ 2 . From

$$ M\left({\mu}_{\mathrm{II}}\right)=-2b{\gamma}^2{m}^4\left(1+m\right)\left(m+C\right)p(m){r}^2(m)/{\left( mB+D\right)}^4<0,\vspace*{-12pt} $$
$$ M\left({\mu}_{\mathrm{III}}\right)= {m}^4{r}^2(m)p(m)q(m)/{D}^4,\vspace*{-12pt} $$
$$ M\left({\mu}_{\mathrm{IV}}\right)=-2b{\gamma}^2{m}^4\left(m-1\right)\left(m-C\right){r}^2(m)q(m)/{\left( mB-C\right)}^4, $$

we have H b m <0for μ II μ<min μ III , μ IV . Thus, we can repeat a similar argument to the case of (iii).

7. Proof of Theorem 7

(i) Let Ψ be the transitive matrix of FGMA and ϕ be one of its eigenvalues such that |ϕ| ≥ 1. Then, like the case of GMA, ϕ is also an eigenvalue of QA, where Q is an n × n diagonal matrix whose i-th diagonal element is

$$ {q}_i=\frac{1}{1+\dots +{r}_i^{\tau_i-1}}\frac{\phi -1}{\phi -{r}_i}\left(1-\frac{r^{\tau_i}}{\phi^{\tau_i}}\right){b}_i+1. $$

Let ψ = ϕ −1, then

$$ \frac{\phi -1}{\phi -{r}_i}\left(1-\frac{r^{\tau_i}}{\phi^{\tau_i}}\right)=\left(1-\psi \right)\left(1+ r\psi +\dots +{\left( r\psi \right)}^{\tau_i-1}\right). $$

Let us denote this polynomial of ψ by F ψ . Since F ψ is a complex integer expression, for any complex number αand𝜖>0, there exists a complex number βsuch that β α <𝜖, F β > F α . Footnote 33 Therefore, under the constraint ϕ 1, F ψ =F 1 / ϕ takes the maximum value at a certain ϕsatisfying |ϕ=1. In this case, observing

$$ \left|\frac{\phi -1}{\phi -{r}_i}\right|\le \frac{2}{1+{r}_i},\kern0.5em \left|1-\frac{r^{\tau_i}}{\phi^{\tau_i}}\right|\le 1+{r}_i^{\tau }, $$

we have F 1 / ϕ 2 1 + r i τ / 1 + r i . Consequently,

$$ \left|{{q}}_{\mathrm{i}}\right|\le \frac{2\left(1+{{r}}^{\tau_{{i}}}\right){{b}}_{{i}}}{\left(1+\dots +{{r}}_{{i}}^{\tau_{{i}}-1}\right)\left(1+{{r}}_{{i}}\right)}+1=\frac{2\left(1+{{r}}^{2}+\dots +{{r}}_{{i}}^{2\left({\tau}_{{i}}-1\right)}\right)}{{\left(1+\dots +{{r}}_{{i}}^{\tau_{{i}}-1}\right)}^2}{{b}}_{{i}}+1 $$

which implies 1ρ QA λ F Q + A λ F 2 HB + I A .

(ii) This can be shown in a similar manner to the proof of Theorem 4(ii).

8. Proof of Theorem 8

(i) By definition, it follows that

$$ \eta \left(\tau, {r}\right)-\eta \left(\tau +1,{r}\right)=\frac{2{{r}}^{\tau}}{\left(1+{r}\right)\left({\sum}_{\upsilon =0}^{\tau -1}{{r}}^{\upsilon}\right)\left({\sum}_{\upsilon =0}^{\tau}{{r}}^{\upsilon}\right)}>0 $$

(ii) Differentiating η τ , r with respect to r, we have

$$ {\eta}_r\left(\tau, r\right)=\frac{2f\left(\tau, r\right)}{{\left(1+r\right)}^2{\left(1{-}r\right)}^2{\left({\sum}_{\upsilon =0}^{\tau -1}{r}^{\upsilon}\right)}^2},\kern0.5em f\left(\tau, r\right)\equiv {r}^{2\tau }{-}1+\tau {r}^{\tau -1}\!\left(\!1{-}{r}^2\right). $$

Since f 1 , r =0and

$$ {f}\left(\tau +1,{r}\right)-{f}\left(\tau, {r}\right)={{r}}^{\tau -1}\left({r}+1\right){\left({r}-1\right)}^3{\sum}_{\upsilon =1}^{\uptau}\upsilon {{r}}^{\tau -\upsilon}, $$

η r τ , r can be written as:

$$ {\eta}_r\left(\tau, r\right)=\frac{2\left(r-1\right){\sum}_{\upsilon =1}^{\tau -1}{r}^{\upsilon -1}{\sum}_{u=1}^{\upsilon}u {r}^{\upsilon -u}}{\left(1+r\right){\left({\sum}_{\upsilon =0}^{\tau -1}{r}^{\upsilon}\right)}^2}. $$

9. Proof of Theorem 9

(i) By Schur’s condition, the dominant root of a cubic equation with real coefficient x 3 +α x 2 +βx+γ=0is less than unity if and only if

$$ \left|\gamma \right|<1,\kern0.5em {\left(1-{\gamma}^2\right)}^2>{\left|\beta +\alpha \gamma \right|}^2,\kern0.5em {\left|1+\beta \right|}^2>{\left|\alpha +\gamma \right|}^2. $$

Therefore, ϕ ¯ 2 , r , μ , 0 , b <1 holds if and only if

$$ \begin{aligned}\left| Rr\mu \right|<1, &\kern0.75em {\left(1-{R}^2{r}^2{\mu}^2\right)}^2>{\left(\left(1-r\right) R\mu +r{\mu}^2R\left(R+1\right)\right)}^2, \nonumber \\ & {\left(1+\left(1-r\right) R\mu \right)}^2>{\left(\left(r-1\right)R-1\right)}^2{\mu}^2, \end{aligned} $$
(4.55)

where Rb/(1+r). Let β b 2 b + 1 / b 1 (do not confuse this \( \beta \) with the secondary coefficient of the above equation). Then, the pair of first two inequalities are equivalent to μ< μ 1 for 0<r<β, and

$$ \mu <\nu \left(r,b\right)\equiv \left(1+r\right)\frac{1-r+\sqrt{5{r}^2-6r+1-4r\left(1+r\right)/b}}{2r\left(b\left(r-1\right)-\left(1+r\right)\right)} $$

for βr. The third inequality is equivalent toμ< μ 2 for b + 1 / b 1 <r. Since μ 2 <νfor β<r and μ 1 (β,b)= μ 2 (β,b)=ν(β,b)=3/ 2 b + 1 , these conditions are summarized into (4.44).

(ii) By replacing μ in (4.55) by μ, we have

$$ \left| Rr\mu \right|<1,\kern0.75em {\left(1-{R}^2{r}^2{\mu}^2\right)}^2>{\left(-\left(1-r\right) R\mu +r{\mu}^2R\left(R+1\right)\right)}^2, \vspace*{-14pt}$$
$$ {\left(1-\left(1-r\right) R\mu \right)}^2>{\left(\left(r-1\right)R-1\right)}^2{\mu}^2. $$

as the necessary and sufficient condition for ϕ ¯ 2 , r , μ , 𝜃 , b <1. (4.45) can be derived from these condition in the similar way to (4.44).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Japan KK, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiozawa, Y., Morioka, M., Taniguchi, K. (2019). Dynamic Properties of Quantity Adjustment Process Under Demand Forecast Formed by Moving Average of Past Demands. In: Microfoundations of Evolutionary Economics. Evolutionary Economics and Social Complexity Science, vol 15. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55267-3_4

Download citation

Publish with us

Policies and ethics