Advertisement

Role of Polyamines in Stress Response in Horticultural Crops

  • Xiaopeng Wen
  • Takaya MoriguchiEmail author
Chapter

Abstract

Polyamines (PAs) are low molecular weight aliphatic cations that are ubiquitous in all organisms, including plants. PA accumulation occurs under stress in plants, and modulation of the PA biosynthetic pathway confers tolerance to stresses. Over the past two decades, many reports have unraveled significant functions of PAs in the regulation of abiotic stress tolerance in plants. Here, we focused on the involvement of PA pathways in plants, including those of horticultural crops, in ameliorating abiotic stresses such as salt, drought, heat, chilling, and heavy metals. The possible mechanisms of PA functions on stress tolerance have also been summarized. In addition, the current research trends and future perspectives, especially in horticultural crops, are discussed.

Keywords

Abiotic stress Genetic transformation Horticultural crop Polyamine Tolerance 

References

  1. Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876PubMedCrossRefGoogle Scholar
  2. Alcázar R, Cuevas JC, Planas J, Zarza X, Bortolotti C, Carrasco P, Salinas J, Tiburcio AF, Altabella T (2011) Integration of polyamines in the cold acclimation response. Plant Sci 180:31–38PubMedCrossRefGoogle Scholar
  3. Bitrián M, Zarza X, Altabella T, Tiburcio AF, Alcázar R (2012) Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2:516–528PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cheng L, Zou YJ, Ding SL, Zhang JJ, Yu XL, Cao JS, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Int Plant Biol 51:489–499CrossRefGoogle Scholar
  5. Choudhary SP, Oral HV, Bhardwaj R, Yu JQ, Tran LSP (2012) Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cona A, Rea G, Angelini R, Fererico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88PubMedCrossRefGoogle Scholar
  7. Cuevas JC, Lopez-Cobollo R, Alcazar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220PubMedCentralPubMedCrossRefGoogle Scholar
  8. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525PubMedCrossRefGoogle Scholar
  9. Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488CrossRefGoogle Scholar
  10. Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Sci 164:293–299CrossRefGoogle Scholar
  11. Ha HC, Sirosoma NS, Kuppusamy P, Zweiler JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95:11140–11145PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hazarika P, Rajam MV (2011) Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants 17:115–128PubMedCentralPubMedCrossRefGoogle Scholar
  14. He LX, Nada K, Tachibana S (2002) Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). J Jpn Soc Hortic Sci 71:490–498CrossRefGoogle Scholar
  15. He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141PubMedCrossRefGoogle Scholar
  16. Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300–311PubMedCrossRefGoogle Scholar
  17. Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722PubMedCrossRefGoogle Scholar
  18. Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassinosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086PubMedCrossRefGoogle Scholar
  19. Königshofer H, Lechner S (2002) Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to high-temperature stress? Plant Physiol Biochem 40:51–59CrossRefGoogle Scholar
  20. Lee S-H, Ahsan N, Lee K-W, Kim D-H, Lee D-G, Kwak S-S, Kwon S-Y, Kim T-H, Lee B-H (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638PubMedCrossRefGoogle Scholar
  21. Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326PubMedCentralPubMedCrossRefGoogle Scholar
  22. Neily HM, Baldet P, Arfaoui I, Saito T, Li Q, Asamizu E, Matsukura C, Moriguchi T, Hirsohi E (2011) Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants. Plant Biotechnol 28:33–42CrossRefGoogle Scholar
  23. Palavan-Unsal N, Arisan D (2009) Nitric oxide signalling in plants. Bot Rev 75:203–229CrossRefGoogle Scholar
  24. Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxides generation and putrescine prevents programmed cell death syndrome induced by the polyamine oxidase generated hydrogen peroxide. Planta (Berl) 220:826–837CrossRefGoogle Scholar
  25. Paschalidis KA, Toumi I, Moschou PN, Roubelakis-Angelakis KA (2010) ABA-dependent amine oxidases-derived H2O2 affects stomata conductance. Plant Signal Behav 5:1153–1156CrossRefGoogle Scholar
  26. Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883PubMedCrossRefGoogle Scholar
  27. Sagor GHM, Berberich T, Takahashi Y, Niitsu M, Kusano T (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 22:595–605PubMedCrossRefGoogle Scholar
  28. Sharma SS, Dietz K-J (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50PubMedCrossRefGoogle Scholar
  29. Shen WY, Nada K, Tachibana S (2000) Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol 124:431–439PubMedCentralPubMedCrossRefGoogle Scholar
  30. Shevyakova NI, Cheremisina AI, Kuznetsov VV (2011) Phytoremediation potential of Amaranthus hybrids: antagonism between nickel and iron and chelating role of polyamines. Russ J Plant Physiol 58:634–642CrossRefGoogle Scholar
  31. Shi H, Zhu J-K (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50:543–550PubMedCrossRefGoogle Scholar
  32. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefGoogle Scholar
  33. Takahashi Y, Cong R, Sagor GHM, Niitsu M, Berberich T, Kusano T (2010) Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana. Plant Cell Rep 29:955–965PubMedCrossRefGoogle Scholar
  34. Theocharis A, Clément EA, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta (Berl) 235:1091–1105CrossRefGoogle Scholar
  35. Toumi I, Moschou PN, Paschalidis KA, Bouamama B, Salem-fnayou AB, Ghorbel AW, Mliki A, Roubelakis-Angelakis KA (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525PubMedCrossRefGoogle Scholar
  36. Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354PubMedCrossRefGoogle Scholar
  37. Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375PubMedCrossRefGoogle Scholar
  38. Wang H, Huang J, Liang W, Liang X, Bi Y (2012) Involvement of putrescine and nitric oxide in aluminum tolerance by modulating citrate secretion from roots of red kidney bean. Plant Soil 366:479–490CrossRefGoogle Scholar
  39. Wen XP, Pang XM, Matsuda N, Kita M, Hao YJ, Kitashiba H, Honda C, Moriguchi T (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263PubMedCrossRefGoogle Scholar
  40. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2009) Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environ Exp Bot 66:471–478CrossRefGoogle Scholar
  41. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103PubMedCrossRefGoogle Scholar
  42. Wen XP, Ban Y, Inoue H, Matsuda N, Kita M, Moriguchi T (2011) Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environ Exp Bot 72:157–166CrossRefGoogle Scholar
  43. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788PubMedCrossRefGoogle Scholar
  44. Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine induced nitric oxide synthesis in plants. Trends Plant Sci 11:522–524PubMedCrossRefGoogle Scholar
  45. Zhang J, Shu W-S (2006) Mechanisms of heavy metal cadmium tolerance in plants. J Plant Physiol Mol Biol 32:1–8Google Scholar
  46. Zhang CM, Zou ZR, Huang Z, Zhang ZX (2010) Effects of exogenous spermidine on photosynthesis of tomato seedlings under drought stress. Agric Res Arid Areas 3:182–187Google Scholar
  47. Zhu J-K (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Institute of Agro-bioengineeringGuizhou UniversityGuizhouP.R. China
  2. 2.NARO Institute of Fruit Tree ScienceIbarakiJapan

Personalised recommendations