Advertisement

Promoters for Transgenic Horticultural Plants

  • Olga G. SmirnovaEmail author
  • Elena N. Tishchenko
  • Anton A. Ermakov
  • Vladimir K. Shumny
Chapter
  • 1.5k Downloads

Abstract

Gene engineering provides an opportunity to obtain plants with either silenced or overexpressed target genes. This approach is frequently used to study various aspects of the biochemistry, physiology, and stress tolerance of horticultural plants. Selection of appropriate promoters to govern transcription of a transgenic construct is an important step in the development of efficient genetic models. Here we present a brief overview of available literature data on the promoters investigated with the transgenic horticultural plants and some valuable information resources in this filed.

Keywords

Gene engineering Horticulture Promoter Stress-responsive Tissue-specific Transgenic plant 

Notes

Acknowledgments

O.G.S. and V.K.Sh. are grateful to ICG budget project (VI.53.1.3), RFBR 14-04-0103614, SB RAS & National Academy of Sciences of Ukraine joint grant.

References

  1. Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot 56(409):37–46PubMedGoogle Scholar
  2. Aida R, Ohira K, Tanaka Y et al (2004) Efficient transgene expression in chrysanthemum, Dendranthema grandiflorum (Ramat.) Kitamura, by using the promoter of a gene for chrysanthemum chlorophyll-a/b-binding protein. Breed Sci 54:51–58CrossRefGoogle Scholar
  3. Aida R, Nagaya S, Yoshida K et al (2005) Efficient transgene expression in chrysanthemum, Chrysanthemum morifolium Ramat., with the promoter of a gene for tobacco elongation factor 1 α protein. JARQ 39(4):269–274CrossRefGoogle Scholar
  4. Annadana S, Mlynárová L, Udayakumar M, de Jong J (2001) The potato Lhca3.St.1 promoter confers high and stable transgene expression in chrysanthemum, in contrast to CaMV-based promoters. Mol Breed 8:335–344CrossRefGoogle Scholar
  5. Annadana S, Beekwilder MJ, Kuipers G et al (2002) Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora. Transgenic Res 11(4):437–445PubMedCrossRefGoogle Scholar
  6. Attílio LB, de Assis Alves Mourão Filho F, Harakava R et al (2013) Genetic transformation of sweet oranges with the D4E1 gene driven by the AtPP2 promoter. Pesq Agropec Bras 48(7):741–747Google Scholar
  7. Barbosa-Mendes JM, de Assis Alves Mourão Filho F, Filho AB et al (2009) Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci Hortic 122:109–115Google Scholar
  8. Benyon LS, Stover E, Bowman KD et al (2013) GUS expression driven by constitutive and phloem-specific promoters in citrus hybrid US-802. In Vitro Cell Dev Biol Plant 49:255–265CrossRefGoogle Scholar
  9. Bhuiyan NH, Hamada A, Yamada N et al (2007) Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. J Exp Bot 58(15-16):4203–4212PubMedCrossRefGoogle Scholar
  10. Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132(4):2174–2183PubMedCentralPubMedCrossRefGoogle Scholar
  11. Clark DG, Dervinis C, Barrett JE et al (2004) Drought-induced leaf senescence and horticultural performance of transgenic PSAG12-IPT petunias. J Am Soc Hortic Sci 129:93–99Google Scholar
  12. Das M, Chauhan H, Chhibbar A et al (2011) High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res 20:231–246PubMedCrossRefGoogle Scholar
  13. de Azevedo FA, Mourão Filho FAA, Schinor EH et al (2006) GUS gene expression driven by a citrus promoter in transgenic tobacco and ‘Valencia’ sweet orange. Pesq Agropec Bras 41:1623–1628CrossRefGoogle Scholar
  14. Du L, Lou Q, Zhang X et al (2014) Construction of flower-specific chimeric promoters and analysis of their activities in transgenic Torenia. Plant Mol Biol Rep 32:234–245CrossRefGoogle Scholar
  15. Dutt M, Ananthakrishnan G, Jaromin MK et al (2012) Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants. Tree Physiol 32:83–93PubMedCrossRefGoogle Scholar
  16. Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101PubMedCrossRefGoogle Scholar
  17. Endo T, Shimada T, Fujii H et al (2007) Promoter analysis of a type 3 metallothionein-like gene abundant in Satsuma mandarin (Citrus unshiu Marc.) fruit. Sci Hortic 112:207–214CrossRefGoogle Scholar
  18. Gago J, Grima-Pettenati J, Gallego PP (2011) Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine (Vitis vinifera L. cv. Albariño) conferred by the EgCCR promoter of Eucalyptus gunnii. Plant Physiol Biochem 49(4):413–419PubMedCrossRefGoogle Scholar
  19. Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21(6):1163–1181PubMedCrossRefGoogle Scholar
  20. García-Sogo B, Pineda B, Castelblanque L et al (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Rep 29(1):61–77PubMedCrossRefGoogle Scholar
  21. García-Sogo B, Pineda B, Roque E et al (2012) Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol 12:156PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gittins JR, Pellny TK, Hiles ER et al (2000) Transgene expression driven by heterologous ribulose-1, 5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill.). Planta (Berl) 210(2):232–240CrossRefGoogle Scholar
  23. Gittins RJ, Hiles ER, Pellny TK et al (2001) The Brassica napus extA promoter: a novel alternative promoter to CaMV 35S for directing transgene expression to young stem tissues and load bearing regions of transgenic apple trees (Malus pumila Mill.). Mol Breed 7:51–62CrossRefGoogle Scholar
  24. Hanhineva K, Kokko H, Siljanen H et al (2009) Stilbene synthase gene transfer caused alterations in the phenylpropanoid metabolism of transgenic strawberry (Fragaria × ananassa). J Exp Bot 60(7):2093–2106PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hermann SR, Harding RM, Dale JL (2001) The banana actin 1 promoter drives near-constitutive transgene expression in vegetative tissues of banana (Musa spp.). Plant Cell Rep 20:525–530CrossRefGoogle Scholar
  26. Jandrew J, Clark DG (2001) Selectively induced nutrient deficiency in transgenic PSAG12-IPT, PSAG13-IPT and PSAG12-Kn1 petunias. HortScience 36(3):518–519Google Scholar
  27. Jirschitzka J, Mattern DJ, Gershenzon J, D’Auria JC (2013) Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Curr Opin Biotechnol 24(2):320–328PubMedCrossRefGoogle Scholar
  28. Joung YH, Kamo K (2006) Expression of a polyubiquitin promoter isolated from Gladiolus. Plant Cell Rep 25(10):1081–1088PubMedCrossRefGoogle Scholar
  29. Kalariya HM, Schnabel G (2011) Generation and characterization of transgenic plum lines expressing gafp-1 with the bul409 promoter. HortScience 46(7):975–980Google Scholar
  30. Khodakovskaya M, Li Y, Li J et al (2005) Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia × hybrida and Dendranthema × grandiflorum. J Exp Bot 56(414):1165–1175PubMedCrossRefGoogle Scholar
  31. Lai QX, Bao ZY, Zhu ZJ et al (2007) Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified Gerbera. J Zhejiang Univ Sci B 8(7):458–464PubMedCentralPubMedCrossRefGoogle Scholar
  32. Laquitaine L, Gomès E, François J et al (2006) Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression. Mol Plant Microbe Interact 19(10):1103–1112PubMedCrossRefGoogle Scholar
  33. Lauri A, Xing S, Heidmann I et al (2006) The pollen-specific DEFH125 promoter from Antirrhinum is bound in vivo by the MADS-box proteins DEFICIENS and GLOBOSA. Planta (Berl) 224(1):61–71CrossRefGoogle Scholar
  34. Lee JK, Kim IJ (2011) Modulation of fruit softening by antisense suppression of endo-b-1,4-glucanase in strawberry. Mol Breed 27:375–383CrossRefGoogle Scholar
  35. Leitner-Dagan Y, Ovadis M, Shklarman E et al (2006) Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. Plant Physiol 142(1):233–244PubMedCentralPubMedCrossRefGoogle Scholar
  36. Li ZT, Kim KH, Jasinski JR et al (2012) Large-scale characterization of promoters from grapevine (Vitis spp.) using quantitative anthocyanin and GUS assay systems. Plant Sci 196:132–142PubMedCrossRefGoogle Scholar
  37. Liu Y, Lou Q, Xu W et al (2011) Characterization of a chalcone synthase (CHS) flower-specific promoter from Lilium orential ‘Sorbonne’. Plant Cell Rep 30(12):2187–2194PubMedCrossRefGoogle Scholar
  38. Lütken H, Jensen LS, Topp SH et al (2010) Production of compact plants by overexpression of AtSHI in the ornamental Kalanchoë. Plant Biotechnol J 8(2):211–222PubMedCrossRefGoogle Scholar
  39. Maghuly F, Khan MA, Fernandez EB et al (2008) Stress regulated expression of the GUS-marker gene (uidA) under the control of plant calmodulin and viral 35S promoters in a model fruit tree rootstock: Prunus incisa × serrula. J Biotechnol 135(1):105–116PubMedCrossRefGoogle Scholar
  40. Malnoy M, Venisse JS, Reynoird JP et al (2003) Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta (Berl) 216(5):802–814Google Scholar
  41. Malnoy M, Reynoird JP, Borejsza-Wysocka EE et al (2006) Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus × domestica). Transgenic Res 15(1):83–93PubMedCrossRefGoogle Scholar
  42. Matsumoto TK, Keith LM, Cabos RY et al (2013) Screening promoters for Anthurium transformation using transient expression. Plant Cell Rep 32(3):443–451PubMedCrossRefGoogle Scholar
  43. Mimida N, Oshino H, Li J et al (2011) Effects of the plant growth regulators on expression of MdTFL1 promoter fused b-glucuronidase (GUS) reporter gene in apple (Malus spp.) tissues in vitro. Plant Biotechnol 28:503–508CrossRefGoogle Scholar
  44. Miyata LY, Harakava R, Stipp LC et al (2012) GUS expression in sweet oranges (Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters. Plant Cell Rep 31(11):2005–2013PubMedCrossRefGoogle Scholar
  45. Nishikawa F, Endo T, Shimada T et al (2008) Isolation and characterization of a Citrus FT/TFL1 homologue (CuMFT1), which shows quantitatively preferential expression in Citrus seeds. J Jpn Soc Hortic Sci 77(1):38–46CrossRefGoogle Scholar
  46. Nishikawa F, Endo T, Shimada T et al (2009) Characterization of the 5′-flanking region of the Citrus d-limonene synthase gene, which shows a quantitatively preferential expression in peel. J Jpn Soc Hortic Sci 78(1):84–89CrossRefGoogle Scholar
  47. Outchkourov NS, Peters J, de Jong J et al (2003) The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta (Berl) 216(6):1003–1012Google Scholar
  48. Park JI, Lee YK, Chung WI et al (2006) Modification of sugar composition in strawberry fruit by antisense suppression of an ADP glucose pyrophosphorylase. Mol Breed 17:269–279CrossRefGoogle Scholar
  49. Pasquali G, Orbović V, Grosser JW (2009) Transgenic grapefruit plants expressing the PAPETALA3-IPTgp gene exhibit altered expression of PR genes. Plant Cell Tissue Organ Cult 97:215–223Google Scholar
  50. Peremarti A, Twyman RM, Gómez-Galera S (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73(4-5):363–378PubMedCrossRefGoogle Scholar
  51. Rossi M, Carrari F, Cabrera-Ponce JL et al (1998) Analysis of an abscisic acid (ABA)-responsive gene promoter belonging to the Asr gene family from tomato in homologous and heterologous systems. Mol Gen Genet 258(1-2):1–8PubMedCrossRefGoogle Scholar
  52. Rühmann S, Treutter D, Fritsche S et al (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J Agric Food Chem 54(13):4633–4640PubMedCrossRefGoogle Scholar
  53. Santos E, Remy S, Thiry E et al (2009) Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biol 9:77PubMedCentralPubMedCrossRefGoogle Scholar
  54. Sasaki K, Yamaguchi H, Narumi T et al (2011) Utilization of a floral organ-expressing AP1 promoter for generation of new floral traits in Torenia fournieri Lind. Plant Biotechnol 28:181–188CrossRefGoogle Scholar
  55. Shekhawat UK, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta (Berl) 5:915–932CrossRefGoogle Scholar
  56. Singh M, Bhalla PL, Xu H, Singh MB (2003) Isolation and characterization of a flowering plant male gametic cell-specific promoter. FEBS Lett 542(1-3):47–52PubMedCrossRefGoogle Scholar
  57. Smirnova OG, Ibragimova SS, Kochetov AV (2012) Simple database to select promoters for plant transgenesis. Transgenic Res 21(2):429–437PubMedCrossRefGoogle Scholar
  58. Sunil Kumar GB, Ganapathi TR, Revathi CJ et al (2005) Expression of hepatitis B surface antigen in transgenic banana plants. Planta (Berl) 222(3):484–493CrossRefGoogle Scholar
  59. Szankowski I, Briviba K, Fleschhut J et al (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22(2):141–149PubMedCrossRefGoogle Scholar
  60. Tittarelli A, Santiago M, Morales A et al (2009) Isolation and functional characterization of cold-regulated promoters, by digitally identifying peach fruit cold-induced genes from a large EST dataset. BMC Plant Biol 9:121PubMedCentralPubMedCrossRefGoogle Scholar
  61. van der Meer IM, Spelt CE, Mol JN, Stuitje AR (1990) Promoter analysis of the chalcone synthase (chsA) gene of Petunia hybrida: a 67-bp promoter region directs flower-specific expression. Plant Mol Biol 15(1):95–109PubMedCrossRefGoogle Scholar
  62. Vaughan SP, James DJ, Lindsey K, Massiah AJ (2006) Characterization of FaRB7, a near root-specific gene from strawberry (Fragaria × ananassa Duch.) and promoter activity analysis in homologous and heterologous hosts. J Exp Bot 57:3901–3910Google Scholar
  63. Verries C, Pradal M, Chatelet P et al (2004) Isolation and analysis of the promoter of VvAdh2, a grapevine (Vitis vinifera L.) ripening-related gene. Plant Sci 167(5):1067–1074CrossRefGoogle Scholar
  64. Wada M, Ureshino A, Tanaka N et al (2009) Anatomical analysis by two approaches ensure the promoter activities of apple AFL genes. J Jpn Soc Hortic Sci 78(1):32–39CrossRefGoogle Scholar
  65. Wang XL, Peng XX (2001a) Cloning of promoter of banana fruit-specific ACC synthase gene and primary study on its function. Sheng Wu Gong Cheng Xue Bao 17(3):293–296PubMedGoogle Scholar
  66. Wang XL, Peng XX (2001b) Cloning of promoter of banana fruit ripening-related ACO1 and primary study on its function. Sheng Wu Gong Cheng Xue Bao 17(4):428–431PubMedGoogle Scholar
  67. Wilmink A, van de Ven BCE, Dons JJM (1995) Activity of constitutive promoters in various species from the Liliaceae. Plant Mol Biol 28:949–955PubMedCrossRefGoogle Scholar
  68. Xu W, Yu Y, Ding J et al (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta (Berl) 231(2):475–487CrossRefGoogle Scholar
  69. Yu Y, Xu W, Wang J et al (2013) A core functional region of the RFP1 promoter from Chinese wild grapevine is activated by powdery mildew pathogen and heat stress. Planta (Berl) 237(1):293–303CrossRefGoogle Scholar
  70. Zenoni S, Fasoli M, Tornielli GB et al (2011) Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida. New Phytol 191(3):662–677PubMedCrossRefGoogle Scholar
  71. Zhao Y, Liu Q, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23(4):224–230PubMedCrossRefGoogle Scholar
  72. Zhu YJ, Agbayani R, Jackson MC et al (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta (Berl) 220(2):241–250CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Olga G. Smirnova
    • 1
    Email author
  • Elena N. Tishchenko
    • 2
  • Anton A. Ermakov
    • 1
  • Vladimir K. Shumny
    • 1
    • 3
  1. 1.Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Plant Physiology and Genetics of National Academy of Science of UkraineKyivUkraine
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations