Skip to main content

Nutrient Stress Responses of the Bottom-Fermenting Yeast

  • Chapter
  • First Online:
Stress Biology of Yeasts and Fungi

Abstract

Beer is an alcoholic beverage that is made by yeast fermentation of the raw ingredients malt and hops. Since the mid-1990s, varieties of alcoholic beverages such as low-malt beer and no-malt brews made from soybean proteins or peptides instead of malt, and liquid sugar, have been launched. In the process of developing these alcohol beverages, a number of problems that have not previously been encountered in beer production have arisen. To solve these problems, therefore, it is necessary to investigate the physiological state of brewing yeast under various stressed conditions. In this chapter, we describe cellular responses to stress caused by different sugars, by nutrients other than sugars, and by mineral and vitamin deficiency, in addition to other environmental stresses that are predicted to be related to genes specific to bottom-fermenting yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1564–1568

    Article  Google Scholar 

  • Alves SL Jr, Herbert RA, Hollatz C et al (2008) Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl Environ Microbiol 74:1494–1501. doi:10.1128/AEM.02570-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67:376–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen D, Guarente L (2006) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13:64–71. doi:10.1016/j.molmed.2006.12.004

    Article  CAS  Google Scholar 

  • de Sousa HR, Spencer-Martins L, Goncalves P (2004) Differential regulation by glucose and fructose of a gene encoding a specific fructose/H+ symporter in Saccharomyces sense strict yeasts. Yeast 21:519–530. doi:10.1002/yea.1118

    Article  Google Scholar 

  • Dietvorst J, Londesborough J, Steensma HY (2005) Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22:775–788. doi:10.1002/yea.1279

    Article  CAS  PubMed  Google Scholar 

  • Diezemann A, Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43:281–288. doi:10.1007/s00294-003-0392-5

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263. doi:10.1007/s00253-009-2223-1

    Article  CAS  PubMed  Google Scholar 

  • Du L, Su Y, Sun D et al (2008) Formic acid induces Yca1-iindependent apoptosis-like cell death in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 8:531–539. doi:10.1111/j.1567-1364.2008.00375.x

    Article  CAS  PubMed  Google Scholar 

  • Eide DJ, Clark S, Nair TM et al (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77. doi:10.1186/gb-2005-6-9-r77

    Article  PubMed Central  PubMed  Google Scholar 

  • Goncalves P, Rodrigues de Sousa H, Spencer-Martins I (2000) FSY1, a novel gene encoding a specific fructose/H+ symporter in the type strain Saccharomyces carlsbergensis. J Bacteriol 182:5628–5630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Granot D, Snyder M (1991) Glucose induces cAMP-independent growth-regulated changes in stationary-phase cells of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88:5724–5728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Granot D, Snyder M (1993) Carbon source induces growth of stationary phase yeast cells, independent of carbon source metabolism. Yeast 9:465–479

    Article  CAS  PubMed  Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4:7–13

    Article  CAS  PubMed  Google Scholar 

  • Guaragnella N, Antonacci L, Passarella S et al (2011) Achievements and perspectives in yeast acetic acid-induced programmed cell death pathways. Biochem Soc Trans 39:1538–1543. doi:10.1042/BST0391538

    Article  CAS  PubMed  Google Scholar 

  • Hammond JRM (1993) Brewer’s yeasts. In: Rose AH, Harrison JS (eds) The yeasts, vol 5, 2nd edn. Academic, London, pp 7–67

    Chapter  Google Scholar 

  • Hatanaka H, Omura F, Kodama Y et al (2009) Gly-46 and His-50 of yeast maltose transporter Mal21p are essential fro its resistance against glucose-induced degradation. J Biol Chem 284:15448–15457. doi:10.1074/jbc.M808151200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hohmann S, Meacock PA (1998) Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta 1385:201–219

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen T, Lie S, Haga T (1981) Wort quality and the zinc content of malt. In: Proceedings of the 18th Congress European Brewers Convention, Copenhagen, pp 97–104

    Google Scholar 

  • Jespersen L, Cesar D, Meaden PG et al (1999) Multiple α-glucoside transporter genes in brewer’s yeast. Appl Environ Microbiol 62:450–456

    Google Scholar 

  • Kawakubo T, Iwasaki K, Tanaka M et al (2012) Effects of non-sugar nutrients concentration on fermentation and beer taste. In: Abstracts of the annual meeting of the Japan Society for Bioscience, Biotechnology, and Agrochemistry 2012, Kyoto Women’s University, Kyoto, 23–25 March 2012

    Google Scholar 

  • Lauff DB, Santa-Maria GE (2010) Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae. FEMS Yeast Res 10:497–507. doi:10.1111/j.1567-1364.2010.00628.x

    CAS  PubMed  Google Scholar 

  • Lee YJ, Burlet E, Galiano F et al (2011) Phosphate and succinate use different mechanisms to inhibit sugar-induced cell death in yeast. J Biol Chem 286:20267–20274. doi:10.1074/jbc.M110.209379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Libkind D, Hittinger CT, Valerio E et al (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108:14539–14544. doi:10.1073/pnas.115430108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minato T, Yoshida S, Ishiguro T et al (2009) Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Yeast 26:147–165. doi:10.1002/yea1654

    Article  CAS  PubMed  Google Scholar 

  • Nakao Y, Kanamori T, Itoh T et al (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ness F, Aigle M (1995) RTM1: a member of a new family of telomeric repeated genes in yeast. Genetics 140:945–956

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohsugi M, Imanishi Y (1985) Microbiological activity of biotin-vitamers. J Nutr Vitaminol (Tokyo) 31:563–572

    Article  CAS  Google Scholar 

  • Omura F, Hatanaka H, Nakao Y (2007) Characterization of a novel tyrosine permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a. FEMS Yeast Res 7:1350–1361. doi:10.1111/j.1567-1364.2007.00310.x

    Article  CAS  PubMed  Google Scholar 

  • Pina C, Goncalves P, Prista C et al (2004) Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150:2429–2433. doi:10.1099/mic.0.26979-0

    Article  CAS  PubMed  Google Scholar 

  • Piper P, Colderon CO, Hatzixanthis K et al (2001) Weak acid adaptation: the stress response that confers yeast with resistance to organic acid food preservatives. Microbiology 147:2635–2642

    CAS  PubMed  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318. doi:10.1534/genetics.112.140863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Sugiyama M, Wakazono K et al (2012) Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 113:421–430. doi:10.1016/j.jbiosc.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  • Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 62:109–130

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Araki Y, Zhou Y et al (2012) A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 78:4008–4016. doi:10.1128/AEM.00165-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida S, Ikeda E, Uno I et al (1992) Characterization of a staurosporine- and temperature-sensitive mutant, stt1, of Saccharomyces cerevisiae: STT1 is allelic to PKC1. Mol Gen Genet 231:337–344

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Hashimoto K, Shimada E et al (2007a) Identification of bottom-fermenting yeast genes expressed during lager beer fermentation. Yeast 24:599–606. doi:10.1002/yea.1494

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Minato T, Ikado et al (2013) Nutrient stress response of bottom-fermenting yeast. In: Abstracts of the 65th annual meeting of the Society for Biotechnology Japan, International Conference Center Hiroshima, Hiroshima, 18–20 September 2013

    Google Scholar 

  • Yoshimoto H, Ohuchi R, Ikado K et al (2009) Sugar induced death of the bottom fermenting yeast Saccharomyces pastorianus. J Biosci Bioeng 108:60–62. doi:10.1061/j.jbiosc.2008.12.022

    Article  CAS  PubMed  Google Scholar 

  • Zastrow CR, Hollatz C, de Araujo PS et al (2001) Maltotriose fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 27:34–38

    Article  CAS  PubMed  Google Scholar 

  • Zewail A, Xie MW, Xing Y et al (2003) Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc Natl Acad Sci U S A 100:3345–3350. doi:10.1073/pnas.0530118100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yoshida, S., Yoshimoto, H. (2015). Nutrient Stress Responses of the Bottom-Fermenting Yeast. In: Takagi, H., Kitagaki, H. (eds) Stress Biology of Yeasts and Fungi. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55248-2_8

Download citation

Publish with us

Policies and ethics