Skip to main content

Cell Wall Biosynthesis in Filamentous Fungi

  • Chapter
  • First Online:
Stress Biology of Yeasts and Fungi

Abstract

The cell wall provides physical strength to cells and defines the morphology of fungi. During hyphal development of filamentous fungi, the apical region and the branching sites of the cell are remodeled to support hyphal extension and formation of a new hypha. The cell wall has contact with the environment and thus is the place of first contact with external stresses originating outside of the cells. The cell wall also acts as a matrix for various extracellular proteins such as enzymes and sensor proteins. Budding yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species) are industrially and medically important fungi belonging to the Ascomycota. These fungi share similar composition in the cell wall although they are morphologically different. Fungal cell walls are usually composed of glucose, mannose, N-acetyl-d-glucosamine, proteins, and lipids. Some glycans composed of galactofuranose or N-acetyl-d-galactosamine are found characteristically in the cell wall of Aspergillus species. In this chapter, we present an overview of current knowledge on cell wall biogenesis and wall-stress sensing in fungi, particularly focusing on recent findings in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afroz S, El-Ganiny AM, Sanders DA, Kaminskyj SG (2011) Roles of the Aspergillus nidulans UDP-galactofuranose transporter, UgtA in hyphal morphogenesis, cell wall architecture, conidiation, and drug sensitivity. Fungal Genet Biol 48:896–903

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H (2010) Sake: the essence of 2000 years of Japanese wisdom gained from brewing alcoholic beverages from rice. Brewing Society of Japan, Tokyo

    Google Scholar 

  • Alberts AS, Bouquin N, Johnston LH, Treisman R (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein β subunits and the yeast response regulator protein Skn7. J Biol Chem 273:8616–8622

    Article  CAS  PubMed  Google Scholar 

  • Bakker H, Kleczka B, Gerardy-Schahn R, Routier FH (2005) Identification and partial characterization of two eukaryotic UDP-galactopyranose mutases. Biol Chem 386:657–661

    Article  CAS  PubMed  Google Scholar 

  • Beauvais A, Bozza S, Kniemeyer O et al (2013) Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 9(11):e1003716. doi:10.1371/journal.ppat.1003716

    Article  PubMed Central  PubMed  Google Scholar 

  • Cabib E (2009) Two novel techniques for determination of polysaccharide cross-links show that Crh1p and Crh2p attach chitin to both β(1-6)- and β(1-3) glucan in the Saccharomyces cerevisiae cell wall. Eukaryot Cell 8:1626–1636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costachel C, Coddeville B, Latgé JP, Fontaine T (2005) Glycosylphosphatidylinositol-anchored fungal polysaccharide in Aspergillus fumigatus. J Biol Chem 280:39835–39842

    Article  CAS  PubMed  Google Scholar 

  • Cruz S, Muñoz S, Manjón E et al (2013) The fission yeast cell wall stress sensor-like proteins Mtl2 and Wsc1 act by turning on the GTPase Rho1p but act independently of the cell wall integrity pathway. Microbiol Open 2:778–794

    CAS  Google Scholar 

  • Dähn U, Hagenmaier H, Höhne H et al. (1976) Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen. Arch Microbiol 107:143–160

    Article  PubMed  Google Scholar 

  • Damveld RA, Franken A, Arentshorst M et al (2008) A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis. Genetics 178:873–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Groot PWJ, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    Article  PubMed  Google Scholar 

  • Deshpande N, Wilkins MR, Packer N et al (2008) Protein glycosylation pathways in filamentous fungi. Glycobiology 8:626–637

    Article  Google Scholar 

  • Dichtl K, Helmschrott C, Dirr F, Wagener J (2012) Deciphering cell wall integrity signaling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant Rho GTPases. Mol Microbiol 83:506–519

    Article  CAS  PubMed  Google Scholar 

  • Dupres V, Alsteens D, Wilk S et al (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862

    Article  CAS  PubMed  Google Scholar 

  • El-Ganiny AM, Sanders DA, Kaminskyj SG et al (2008) Aspergillus nidulans UDP-galactopyranose mutase, encoded by ugmA plays key roles in colony growth, hyphal morphogenesis, and conidiation. Fungal Genet Biol 45:1533–1542

    Article  CAS  PubMed  Google Scholar 

  • El-Ganiny AM, Sheoran I, Sanders DA, Kaminskyj SG (2010) Aspergillus nidulans UDP-glucose-4-epimerase UgeA has multiple roles in wall architecture, hyphal morphogenesis, and asexual development. Fungal Genet Biol 47:629–635

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Misato T (1969) Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: Chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochem Biophys Res Commun 37:718–722

    Article  CAS  PubMed  Google Scholar 

  • Engel J, Schmalhorst PS, Dörk-Bousset T et al (2009) A single UDP-galactofuranose transporter is required for galactofuranosylation in Aspergillus fumigatus. J Biol Chem 284:33859–33868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • FarkaÅ¡ V (1985) The fungal cell wall. In: Peberdy JF, Ferenczy L (eds) Fungal protoplasts. Dekker, New York, pp 3–29

    Google Scholar 

  • Fontaine T, Simenel C, Dubreucq G et al (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607

    CAS  PubMed  Google Scholar 

  • Fontaine T, Delangle A, Simenel C et al (2011) Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujioka T, Mizutani O, Furukawa K et al (2007) MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell 6:1497–1510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furukawa K, Yoshimi A, Furukawa T et al (2007) Novel reporter gene expression systems for monitoring activation of the Aspergillus nidulans HOG pathway. Biosci Biotechnol Biochem 71:1724–1730

    Article  CAS  PubMed  Google Scholar 

  • Futagami T, Goto M (2012) Putative cell wall integrity sensor proteins in Aspergillus nidulans. Commun Integr Biol 5:206–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Futagami T, Nakao S, Kido Y et al (2011) Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. Eukaryot Cell 10:1504–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Futagami T, Seto K, Kajiwara Y et al (2014) The putative stress sensor protein MtlA is required for conidia formation, cell wall stress tolerance, and cell wall integrity in Aspergillus nidulans. Biosci Biotechnol Biochem. doi:10.1080/09168451.2014.878218

    PubMed  Google Scholar 

  • Goto M (2007) Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem 6:1415–1427

    Article  Google Scholar 

  • Goto M, Harada Y, Oka T et al (2009) Protein O-mannosyltransferases B and C support hyphal development and differentiation in Aspergillus nidulans. Eukaryot Cell 10:1465–1474

    Article  Google Scholar 

  • Gravelat FN, Beauvais A, Liu H et al (2013) Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 9:e1003575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heinisch JJ, Dupres V, Wilk S et al (2010) Single-molecule atomic force microscopy reveals clustering of the yeast plasma-membrane sensor Wsc1. PLoS One 5:e11104

    Article  PubMed Central  PubMed  Google Scholar 

  • Horiuchi H (2009) Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med Mycol. doi:10.1080/13693780802213332

    PubMed  Google Scholar 

  • Hutzler F, Gerstl R, Lommel M, Strahl S (2008) Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol Microbiol 68:1438–1449

    Article  CAS  PubMed  Google Scholar 

  • Jigami Y (2008) Yeast glycobiology and its application. Biosci Biotechnol Biochem 3:637–648

    Article  Google Scholar 

  • Klis FM, De Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39:1–8

    Article  CAS  PubMed  Google Scholar 

  • Komachi Y, Hatakeyama S, Motomatsu H et al (2013) GfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O-glycan in Aspergillus nidulans and Aspergillus fumigatus. Mol Microbiol 90:1054–1073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kovács Z, Szarka M, Kovács S et al (2013) Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans. Fungal Genet Biol 54:1–14

    Article  PubMed  Google Scholar 

  • Kriangkripipat T, Momany M (2009) Aspergillus nidulans protein O-mannosyltransferases play roles in cell wall integrity and developmental patterning. Eukaryot Cell 8:1475–1485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kurita T, Noda Y, Takagi T et al (2011) Kre6 protein essential for yeast cell wall β-1,6-glucan synthesis accumulates at sites of polarized growth. J Biol Chem 286:7429–7438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamarre C, Ibrahim-Granet O, Du C et al (2007) Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet Biol 44:682–690

    Article  CAS  PubMed  Google Scholar 

  • Lambou K, Perkhofer S, Fontaine T et al (2010) Comparative functional analysis of the OCH1 mannosyltransferase families in Aspergillus fumigatus and Saccharomyces cerevisiae. Yeast 8:625–636

    Article  Google Scholar 

  • Latgé JP, Kobayashi H, Debeaupuis JP et al (1994) Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun 62:5424–5433

    PubMed Central  PubMed  Google Scholar 

  • Latgé JP, Mouyna I, Tekaia F et al (2005) Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43:15–22

    Article  Google Scholar 

  • Lee MJ, Gravelat FN, Cerone RP et al (2014) Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 289:1243–1256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leitao EA, Bittencourt VC, Haido RM et al (2003) β-Galactofuranose-containing O-linked oligosaccharides present in the cell wall peptidogalactomannan of Aspergillus fumigatus contain immunodominant epitopes. Glycobiology 13:681–692

    Article  CAS  PubMed  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levin DE, Bartlett-Heubusch E (1992) Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Lommel M, Bagnat M, Strahl S (2004) Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24:46–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maras M, van Die I, Contreras R et al (1990) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16:99–107

    Article  Google Scholar 

  • Mouyna I, Kniemeyer O, Jank T et al (2010) Members of protein O-mannosyltransferase family in Aspergillus fumigatus differentially affect growth, morphogenesis and viability. Mol Microbiol 76:1205–1221

    Article  CAS  PubMed  Google Scholar 

  • Mouyna I, Hartl L, Latgé JP (2013) β-1,3-Glucan modifying enzymes in Aspergillus fumigatus. Front Microbiol 4:81. doi:10.3389/fmicb.2013.00081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikolaou E, Agrafioti I, Stumpf M et al (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Oka T, Hamaguchi T, Sameshima Y et al (2004) Molecular characterization of protein O-mannosyltransferase and its involvement in cell-wall synthesis in Aspergillus nidulans. Microbiology 6:1973–1982

    Article  Google Scholar 

  • Orchard MG, Neuss JC, Galley CM, et al. (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14:3975–3978

    Article  CAS  PubMed  Google Scholar 

  • Osherov N, Yarden O (2010) The cell wall of filamentous fungi. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM, Washington, pp 224–237

    Google Scholar 

  • Rajavel M, Philip B, Buehrer BM et al (1999) Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19:3969–3976

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reinoso-Martín C, Schuller C, Schuetzer-Muehlbauer M, Kuchler K (2003) The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2:1200–1210. doi:10.1128/EC.2.6.1200-1210.2003

    Article  PubMed Central  PubMed  Google Scholar 

  • Rispail N, Soanes DM, Ant C et al (2009) Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 46:287–298

    Article  CAS  PubMed  Google Scholar 

  • Rodicio R, Buchwald U, Schmitz HP, Heinisch JJ (2008) Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis. Fungal Genet Biol 45:422–435

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Herrera J (2012) Fungal cell wall, structure, synthesis, and assembly. CRC, Boca Raton

    Book  Google Scholar 

  • Saito H, Posas F (2012) Response to hyperosmotic stress. Genetics 192:289–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samantaray S, Neubauer M, Helmschrott C, Wagener J (2013) Role of the guanine nucleotide exchange factor Rom2 in cell wall integrity maintenance of Aspergillus fumigatus. Eukaryot Cell 12:288–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmalhorst PS, Krappmann S, Vervecken W et al (2008) Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus. Eukaryot Cell 7:1268–1277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serrano R, Martin H, Casamayor A, Arino J (2006) Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281:39785–39795

    Article  CAS  PubMed  Google Scholar 

  • Straede A, Heinisch JJ (2007) Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett 581:4495–4500

    Article  CAS  PubMed  Google Scholar 

  • Takeshita N, Yamashita S, Ohta A et al (2006) Aspergillus nidulans class V and VI chitin synthases CsmA and CsmB, each with a myosin motor-like domain, perform compensatory functions that are essential for hyphal tip growth. Mol Microbiol 59:1380–1394

    Article  CAS  PubMed  Google Scholar 

  • Tsuizaki M, Ohta A, Horiuchi H (2013) Myosin motor-like domain of class VI chitin synthase CsmB of Aspergillus nidulans is not functionally equivalent to that of class V chitin synthase CsmA. Biosci Biotechnol Biochem 77:369–374

    CAS  PubMed  Google Scholar 

  • Wallis GL, Easton RL, Jolly K et al (2001) Galactofuranoic-oligomannose N-linked glycans of alpha-galactosidase A from Aspergillus niger. Eur J Biochem 268:4134–4143

    Article  CAS  PubMed  Google Scholar 

  • Walsh TJ, Giri N (1997) Pradimicins: a novel class of broad-spectrum antifungal compounds. Eur J Clin Microbiol Infect Dis 16:93–97

    Article  CAS  PubMed  Google Scholar 

  • Willer T, Valero MC, Tanner W et al (2003) O-Mannosyl glycans: from yeast to novel associations with human disease. Curr Opin Struct Biol 13:621–630

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi A, Sano M, Inaba A et al (2013) Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: agsB is the major α-1,3-glucan synthase in this fungus. PLoS One 8(1):e54893. doi:10.1371/journal.pone.0054893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou H, Hu H, Zhang L et al (2007) O-Mannosyltransferase 1 in Aspergillus fumigatus (AfPmt1p) is crucial for cell wall integrity and conidium morphology, especially at an elevated temperature. Eukaryot Cell 6:2260–2268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Goto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Oka, T., Futagami, T., Goto, M. (2015). Cell Wall Biosynthesis in Filamentous Fungi. In: Takagi, H., Kitagaki, H. (eds) Stress Biology of Yeasts and Fungi. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55248-2_10

Download citation

Publish with us

Policies and ethics