Skip to main content

Genome Editing in Ascidians

  • Chapter
  • First Online:
Targeted Genome Editing Using Site-Specific Nucleases
  • 3866 Accesses

Abstract

Genome editing has the potential to provide new approaches to investigate biological questions, and can provide simpler experimental approaches than more established techniques. Tunicates are a group of diverse marine organisms found in seas throughout the world. Tunicates, and in particular, ascidians are attractive model organisms, particularly for the experimental study of early animal development due to the relative simplicity of development, and the wide range of experimental techniques available, particularly for Ciona intestinalis. In this chapter we will discuss the current state of techniques for performing gene knockdowns or knockouts in ascidians and describe the recent progress in using recently developed genome editing technologies utilizing custom nucleases. These new experimental approaches are particularly suited to investigating the later stages of ascidian development, after the tailbud embryo has formed, and have the potential to open up exciting new opportunities to understand the unknown processes of animal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge AL, Madin LP (1982) Pelagic tunicates: unique herbivores in the marine plankton. Biosci 32:655–663

    Article  Google Scholar 

  • Amat F, Keller PJ (2013) Towards comprehensive cell lineage reconstructions in wm complex organisms using light-sheet microscopy. Dev Growth Differ 55:563–578

    Article  PubMed  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, BÅ‚ażewicz-Paszkowycz M, Bock P, Boxshall G, Boyko CB, Brandão SN, Bray RA, Bruce NL, Cairns SD, Chan T-Y, Cheng L, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, De Clerck O, Decock W, De Grave S, de Voogd NJ, Domning DP, Emig CC, Erséus C, Eschmeyer W, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gómez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk P, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah C, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi R, Neuhaus B, Ng PKL, Nielsen C, Norenburg J, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh P, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V, Sterrer W, Stöhr S, Swalla B, Tasker ML, Thuesen EV, Timm T, Todaro MA, Turon X, Tyler S, Uetz P, van der Land J, Vanhoorne B, van Ofwegen LP, van Soest RWM, Vanaverbeke J, Walker-Smith G, Walter TC, Warren A, Williams GC, Wilson SP, Costello MJ (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

    Article  CAS  PubMed  Google Scholar 

  • Christiaen L, Wagner E, Shi W, Levine M (2009) The Sea Squirt Ciona intestinalis. Cold Spring Harb Protoc 12:pdb.emo138

    Google Scholar 

  • Corbo JC, Levine M, Zeller RW (1997) Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124:589–602

    CAS  PubMed  Google Scholar 

  • Crocker J, Stern DL (2013) TALE-mediated modulation of transcriptional enhancers in vivo. Nat Methods 10:762–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson EH, Britten RJ (1971) Note on the control of gene expression during development. J Theor Biol 32:123–130

    Article  CAS  PubMed  Google Scholar 

  • Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, Harafuji N, Hastings KEM, Ho I, Hotta K, Huang W, Kawashima T, Lemaire P, Martinez D, Meinertzhagen IA, Necula S, Nonaka M, Putnam N, Rash S, Saiga H, Satake M, Terry A, Yamada L, Wang H-G, Awazu S, Azumi K, Boore J, Branno M, Chin-Bow S, DeSantis R, Doyle S, Francino P, Keys DN, Haga S, Hayashi H, Hino K, Imai KS, Inaba K, Kano S, Kobayashi K, Kobayashi M, Lee B-I, Makabe KW, Manohar C, Matassi G, Medina M, Mochizuki Y, Mount S, Morishita T, Miura S, Nakayama A, Nishizaka S, Nomoto H, Ohta F, Oishi K, Rigoutsos I, Sano M, Sasaki A, Sasakura Y, Shoguchi E, Shin-i T, Spagnuolo A, Stainier D, Suzuki MM, Tassy O, Takatori N, Tokuoka M, Yagi K, Yoshizaki F, Wada S, Zhang C, Hyatt PD, Larimer F, Detter C, Doggett N, Glavina T, Hawkins T, Richardson P, Lucas S, Kohara Y, Levine M, Satoh N, Rokhsar DS (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965–968

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara S, Corbo JC, Levine M (1998) The snail repressor establishes a muscle/notochord boundary in the Ciona embryo. Development 125:2511–2520

    CAS  PubMed  Google Scholar 

  • Hudson C, Yasuo H (2008) Similarity and diversity in mechanisms of muscle fate induction between ascidian species. Biol Cell 100:265–277

    Article  PubMed  Google Scholar 

  • Ikuta T, Satoh N, Saiga H (2010) Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Development 137:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Imai KS, Levine M, Satoh N, Satou Y (2006) Regulatory blueprint for a chordate embryo. Science 312:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Joly J-S, Kano S, Matsuoka T et al (2007) Culture of Ciona intestinalis in closed systems. Dev Dyn 236:1832–1840

    Article  PubMed  Google Scholar 

  • Kawai N, Ochiai H, Sakuma T, Yamada L, Sawada H, Yamamoto T, Sasakura Y (2012) Efficient targeted mutagenesis of the chordate Ciona intestinalis genome with zinc-finger nucleases. Dev Growth Differ 54:535–545

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kitamura S, Sekida S, Tsuda M, Sunanaga T (2012) Molecular anatomy of tunicate senescence: reversible function of mitochondrial and nuclear genes associated with budding cycles. Development 139:4083–4093

    Article  CAS  PubMed  Google Scholar 

  • Kumano G, Negoro N, Nishida H (2014) Transcription factor Tbx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian, Halocynthia roretzi. Dev Growth Differ 56:310–322

    Article  CAS  PubMed  Google Scholar 

  • Lemaire P (2011) Evolutionary crossroads in developmental biology: the tunicates. Development 138:2143–2152

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Satoh N (1983) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight-cell stage. Dev Biol 99:382–394

    Article  CAS  PubMed  Google Scholar 

  • Omotezako T, Nishino A, Onuma TA, Nishida H (2013) RNA interference in the appendicularian Oikopleura dioica reveals the function of the Brachyury gene. Dev Genes Evol 223:261–267

    Article  CAS  PubMed  Google Scholar 

  • Passamaneck YJ, Di Gregorio A (2005) Ciona intestinalis: chordate development made simple. Dev Dyn 233:1–19

    Article  CAS  PubMed  Google Scholar 

  • Peter IS, Davidson EH (2009) Genomic control of patterning. Int J Dev Biol 53:707–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robin FB, Dauga D, Tassy O, Sobral D, Daian F, Lemaire P (2011) Time-lapse imaging of live Phallusia embryos for creating 3D digital replicas. Cold Spring Harb Protoc 2011:1244–1246

    PubMed  Google Scholar 

  • Sasaki S, Yoshida K, Hozumi A, Sasakura Y (2014) CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis. Dev Growth Differ 56:499–510

    Google Scholar 

  • Sasakura Y, Sierro N, Nakai K, Inaba K, Kusakabe TG (2012) Genome structure, functional genomics, and proteomics in ascidians. In: Genome mapping and genomics in laboratory animals. Springer, Berlin, Heidelberg, pp 87–132

    Google Scholar 

  • Satoh N (1994) Developmental biology of ascidians. Cambridge University Press, New York

    Google Scholar 

  • Satoh N (2014) Developmental genomics of ascidians. Wiley Brackwell, New York

    Google Scholar 

  • Satoh N, Araki I, Satou Y (1996) An intrinsic genetic program for autonomous differentiation of muscle cells in the ascidian embryo. Proc Natl Acad Sci U S A 93:9315–9321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, Gorsky G, Thompson EM, Lehrach H, Reinhardt R, Chourrout D (2001) Miniature genome in the marine chordate Oikopleura dioica. Science 294:2506

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Peyrot SM, Munro E, Levine M (2009) FGF3 in the floor plate directs notochord convergent extension in the Ciona tadpole. Development 136:23–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shirae-Kurabayashi M, Matsuda K, Nakamura A (2011) Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 138:2871–2881

    Article  CAS  PubMed  Google Scholar 

  • Small KS, Brudno M, Hill MM, Sidow A (2007) A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Biol 8:R41

    Article  PubMed Central  PubMed  Google Scholar 

  • Stolfi A, Christiaen L (2012) Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192:55–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treen N, Yoshida K, Sakuma T, Sasaki H, Kawai N, Yamamoto T, Sasakura Y (2014) Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in Ciona. Development 141:481–487

    Article  CAS  PubMed  Google Scholar 

  • Veeman MT, Chiba S, Smith WC (2011) Ciona genetics. In: Vertebrate embryogenesis. Humana Press, Totowa, pp 401–422

    Google Scholar 

  • Voskoboynik A, Newman AM, Corey DM, Sahoo D, Pushkarev D, Neff NF, Passarelli B, Koh W, Ishizuka KJ, Palmeri KJ, Dimov IK, Keasar C, Fan HC, Mantalas GL, Sinha R, Penland L, Quake SR, Weissman IL (2013a) Identification of a colonial chordate histocompatibility gene. Science 341:384–387

    Article  CAS  PubMed  Google Scholar 

  • Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D, Koh W, Passarelli B, Fan HC, Mantalas GL, Palmeri KJ, Ishizuka KJ, Gissi C, Griggio F, Ben-Shlomo R, Corey DM, Penland L, White RA, Weissman IL, Quake SR (2013b) The genome sequence of the colonial chordate, Botryllus schlosseri. Elife 2:e00569

    Article  PubMed Central  PubMed  Google Scholar 

  • Wada H, Satoh N (1994) Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proc Natl Acad Sci USA 91:1801–1804

    Google Scholar 

  • Whittaker JR (1973) Segregation during ascidian embryogenesis of egg cytoplasmic information for tissue-specific enzyme development. Proc Natl Acad Sci U S A 70:2096–2100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida K, Treen N, Hozumi A et al (2014) Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases. Genesis 52:431–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members in Shimoda Marine Research Center, University of Tsukuba for their help to support our research. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and Technology (MEXT) to YS. YS was supported by the Toray Science and Technology Grant. Further support was provided by grants from the National Bioresource Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Treen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Treen, N., Sasakura, Y. (2015). Genome Editing in Ascidians. In: Yamamoto, T. (eds) Targeted Genome Editing Using Site-Specific Nucleases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55227-7_7

Download citation

Publish with us

Policies and ethics