Skip to main content

Genome Editing in Sea Urchin

  • Chapter
  • First Online:
  • 3873 Accesses

Abstract

The sea urchin has long been used for biological research as a model organism. Methods for gene transfer, gene disruption and analysis of gene expression in the sea urchin embryo have been established, and the gene regulatory network of sea urchin endomesoderm specification has been elucidated recently. To analyze the functional linkage among regulatory genes for construction of the gene regulatory network, the function of each regulatory gene is perturbed, and the subsequent qualitative and quantitative analyses of the responses are determined. For this purpose, gene knockdown by morpholino antisense oligonucleotides has been routinely performed. Furthermore, to investigate the cis-regulatory mechanism responsible for spatiotemporal expression of regulatory genes, transfer of an external reporter gene has been carried out. However, genetic engineering, such as knockout and knock-in are available only in particular model organisms and have not been applied to sea urchin research. Recently, a new technology for targeted genome editing using programmable nucleases, such as zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and RNA-guided endonucleases CRISPR/Cas9 have been developed. In this chapter, I introduce the successful applications of ZFN and TALEN technologies in sea urchin research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akasaka K, Nishimura A, Hijikata K, Iuchi Y, Morokuma J, Takahashi M, Morikawa H, Shimada H (1995) Introduction of DNA into sea urchin eggs by particle gun. Mol Mar Biol Biotechnol 4:255–261

    CAS  PubMed  Google Scholar 

  • Akasaka K, Nishimura A, Takata K, Mitsunaga K, Mibuka F, Ueda H, Hirose S, Tsutsui K, Shimada H (1999) Upstream element of the sea urchin arylsulfatase gene serves as an insulator. Cell Mol Biol (Noisy-le-grand) 45:555–565

    CAS  Google Scholar 

  • Angerer LM, Angerer RC (2004) Disruption of gene function using antisense morpholinos. Methods Cell Biol 74:699–711

    Article  CAS  PubMed  Google Scholar 

  • Arnone MI, Dmochowski IJ, Gache C (2004) Using reporter genes to study cis-regulatory elements. Methods Cell Biol 74:621–652

    Article  CAS  PubMed  Google Scholar 

  • Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172:2391–2403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bogarad LD, Arnone MI, Chang C, Davidson EH (1998) Interference with gene regulation in living sea urchin embryos: transcription factor knock out (TKO), a genetically controlled vector for blockade of specific transcription factors. Proc Natl Acad Sci U S A 95:14827–14832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Britten RJ, Cetta A, Davidson EH (1978) The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus. Cell 15:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Cameron RA, Leahy PS, Britten RJ, Davidson EH (1999) Microsatellite loci in wild-type and inbred Strongylocentrotus purpuratus. Dev Biol 208:255–264

    Article  CAS  PubMed  Google Scholar 

  • Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:14.1–14.31

    Article  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheers MS, Ettensohn CA (2004) Rapid microinjection of fertilized eggs. Methods Cell Biol 74:287–310

    Article  PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Zj P, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • Flytzanis CN, McMahon AP, Hough-Evans BR, Katula KS, Britten RJ, Davidson EH (1985) Persistence and integration of cloned DNA in postembryonic sea urchins. Dev Biol 108:431–442

    Article  CAS  PubMed  Google Scholar 

  • Franks RR, Anderson R, Moore JG, Hough-Evans BR, Britten RJ, Davidson EH (1990) Competitive titration in living sea urchin embryos of regulatory factors required for expression of the CyIIIa actin gene. Development 110:31–40

    CAS  PubMed  Google Scholar 

  • Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol 243:209–214

    Article  CAS  PubMed  Google Scholar 

  • Hosoi S, Sakuma T, Sakamoto N, Yamamoto T (2014) Targeted mutagenesis in sea urchin embryos using TALENs. Dev Growth Differ 56:92–97

    Article  CAS  PubMed  Google Scholar 

  • Hough-Evans BR, Britten RJ, Davidson EH (1988) Mosaic incorporation and regulated expression of an exogenous gene in the sea urchin embryo. Dev Biol 129:198–208

    Article  CAS  PubMed  Google Scholar 

  • Kanungo J, Empson RM, Rasmussen H (1999) Microinjection of an antibody to the Ku protein arrests development in sea urchin embryos. Biol Bull 197:341–347

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa D, Kitajima T, Mitsunaga-Nakatsubo K, Amemiya S, Shimada H, Akasaka K (1999) HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. Mech Dev 80:41–52

    Article  CAS  PubMed  Google Scholar 

  • Leahy PS, Cameron RA, Knox MA, Britten RJ, Davidson EH (1994) Development of sibling inbred sea urchins: normal embryogenesis, but frequent postembryonic malformation, arrest and lethality. Mech Dev 45:255–268

    Article  CAS  PubMed  Google Scholar 

  • Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  CAS  PubMed  Google Scholar 

  • Mahmud AA, Amore G, Bernardi G (2008) Compositional genome contexts affect gene expression control in sea urchin embryo. PLoS One 3:e4025

    Article  PubMed Central  PubMed  Google Scholar 

  • Materna SC, Berney K, Cameron RA (2006) The S. purpuratus genome: a comparative perspective. Dev Biol 300:485–495

    Article  CAS  PubMed  Google Scholar 

  • McMahon AP, Flytzanis CN, Hough-Evans BR, Katula KS, Britten RJ, Davidson EH (1985) Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis. Dev Biol 108:420–430

    Article  CAS  PubMed  Google Scholar 

  • Morris RL, Scholey JM (1997) Heterotrimeric kinesin-II is required for the assembly of motile 9 + 2 ciliary axonemes on sea urchin embryos. J Cell Biol 138:1009–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochiai H, Sakamoto N, Suzuki K, Akasaka K, Yamamoto T (2008) The Ars insulator facilitates I-SceI meganuclease-mediated transgenesis in the sea urchin embryo. Dev Dyn 237:2475–2482

    Article  CAS  PubMed  Google Scholar 

  • Ochiai H, Fujita K, Suzuki K, Nishikawa M, Shibata T, Sakamoto N, Yamamoto T (2010) Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells 15:875–885

    CAS  PubMed  Google Scholar 

  • Ochiai H, Sakamoto N, Fujita K, Nishikawa M, Suzuki KI, Matsuura S, Miyamoto T, Sakuma T, Shibata T, Yamamoto T (2012) Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos. Proc Natl Acad Sci U S A 109:10915–10920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okamitsu Y, Yamamoto T, Fujii T, Ochiai H, Sakamoto N (2010) Dicer is required for the normal development of sea urchin, Hemicentrotus pulcherrimus. Zoolog Sci 27:477–486

    Article  CAS  PubMed  Google Scholar 

  • Oliveri P, Davidson EH (2004) Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 14:351–360

    Article  CAS  PubMed  Google Scholar 

  • Oliveri P, Carrick DM, Davidson EH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246:209–228

    Article  CAS  PubMed  Google Scholar 

  • Rast JP (2000) Transgenic manipulation of the sea urchin embryo. Methods Mol Biol 136:365–373

    CAS  PubMed  Google Scholar 

  • Revilla-i-Domingo R, Oliveri P, Davidson EH (2007) A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc Natl Acad Sci U S A 104:12383–12388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakuma T, Hosoi S, Woltjen K, Suzuki KI, Kashiwagi K, Wada H, Ochiai H, Miyamoto T, Kawai N, Sasakura Y, Matsuura S, Okada Y, Kawahara A, Hayashi S, Yamamoto T (2013a) Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells 18:315–326

    Article  CAS  PubMed  Google Scholar 

  • Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T (2013b) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed Central  PubMed  Google Scholar 

  • Sea Urchin Genome Sequencing Consortium (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    Article  PubMed Central  Google Scholar 

  • Smith J (2008) A protocol describing the principles of cis-regulatory analysis in the sea urchin. Nat Protoc 3:710–718

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Davidson EH (2008) A new method, using cis-regulatory control, for blocking embryonic gene expression. Dev Biol 318:360–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song JL, Wessel GM (2007) Genes involved in the RNA interference pathway are differentially expressed during sea urchin development. Dev Dyn 236:3180–3190

    Article  CAS  PubMed  Google Scholar 

  • Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    Article  CAS  PubMed  Google Scholar 

  • Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  CAS  PubMed  Google Scholar 

  • Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  • Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22:589–594

    Article  CAS  PubMed  Google Scholar 

  • Wu PY, Frit P, Meesala S, Dauvillier S, Modesti M, Andres SN, Huang Y, Sekiguchi J, Calsou P, Salles B, Junop MS (2009) Structural and functional interaction between the human DNA repair proteins DNA ligase IV and XRCC4. Mol Cell Biol 29:3163–3172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yajima M, Kiyomoto M, Akasaka K (2007) Ars insulator protects transgenes from long-term silencing in sea urchin larva. Dev Genes Evol 217:331–336

    Article  CAS  PubMed  Google Scholar 

  • Yajima M, Umeda R, Fuchikami T, Kataoka M, Sakamoto N, Yamamoto T, Akasaka K (2010) Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells. Zoolog Sci 27:638–646

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kawamoto R, Fujii T, Sakamoto N, Shibata T (2007) DNA variations within the sea urchin Otx gene enhancer. FEBS Lett 581:5234–5240

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoaki Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Sakamoto, N. (2015). Genome Editing in Sea Urchin. In: Yamamoto, T. (eds) Targeted Genome Editing Using Site-Specific Nucleases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55227-7_6

Download citation

Publish with us

Policies and ethics