Skip to main content

Genome Editing in Mice Using TALENs

  • Chapter
  • First Online:
Targeted Genome Editing Using Site-Specific Nucleases
  • 3895 Accesses

Abstract

Genetically modified animals such as knockout mice are essential for elucidating in vivo gene functions and identifying genetic contributions to the molecular pathophysiology of human diseases. For the past two decades, knockout mice have been created via embryonic stem (ES) cell-based gene targeting, a time-consuming, laborious, inefficient, and expensive process. The rapid emergence of targeted genome editing technologies is drastically revolutionizing this situation. Genome editing mediated by transcription activator-like effector (TALE) nucleases (TALENs), one of the popular genome editing tools, is a simple and powerful gene-targeting technology. With its extremely high efficiency, the mouse genome can be manipulated directly in fertilized eggs without any targeting vector or selection steps by a process called in vivo genome editing. TALEN-mediated in vivo genome editing provides an exciting opportunity for simple, convenient, and ultra-rapid production of precisely targeted knockout and knockin mice. Using this technology, researchers can freely and routinely manipulate mouse genomes and accelerate in vivo functional genomic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aida T, Ito Y, Takahashi YK, Tanaka K (2012) Overstimulation of NMDA receptors impairs early brain development in vivo. PLoS One 7:e36853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aida T, Imahashi R, Tanaka K (2014) Translating human genetics into mouse: the impact of ultra-rapid in vivo genome editing. Dev Growth Differ 56:34–45

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2012) Method of the Year 2011. Nat Methods 9:1

    Google Scholar 

  • 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  PubMed  Google Scholar 

  • Bai N, Aida T, Yanagisawa M, Katou S, Sakimura K, Mishina M, Tanaka K (2013a) NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina. Mol Brain 6:34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bai N, Hayashi H, Aida T, Namekata K, Harada T, Mishina M, Tanaka K (2013b) Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity. Mol Brain 6:22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH (2013) An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinster RL, Braun RE, Lo D, Avarbock MR, Oram F, Palmiter RD (1989) Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci U S A 86:7087–7091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  CAS  PubMed  Google Scholar 

  • Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui X (2010) Targeted genome modification in mice using zinc-finger nucleases. Genetics 186:451–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carroll D (2014) Genome engineering with targetable nucleases. Annu Rev Biochem 83:409–439

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Davies G, Preece C, Puliyadi R, Szumska D, Bhattacharya S (2013) Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6 J oocytes. PLoS One 8:e60216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prévôt B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325:433

    Google Scholar 

  • Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR (2014) Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods 11:429–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harada T, Harada C, Watanabe M, Inoue Y, Sakagawa T, Nakayama N, Sasaki S, Okuyama S, Watase K, Wada K, Tanaka K (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci U S A 95:4663–4666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117:1763–1770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H (2013) Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 70:2969–2983

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Zhang F (2012) Dissecting neural function using targeted genome engineering technologies. ACS Chem Neurosci 3:603–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278

    Article  CAS  PubMed  Google Scholar 

  • Jones JM, Meisler MH (2014) Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a. Genesis 52:141–148

    Article  CAS  PubMed  Google Scholar 

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Maréchal A, Langevin S, Benomari N, Bertonati C, Silva GH, Daboussi F, Epinat JC, Montoya G, Duclert A, Duchateau P (2014) Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 42:5390–5402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamberov YG, Wang S, Tan J, Gerbault P, Wark A, Tan L, Yang Y, Li S, Tang K, Chen H, Powell A, Itan Y, Fuller D, Lohmueller J, Mao J, Schachar A, Paymer M, Hostetter E, Byrne E, Burnett M, McMahon AP, Thomas MG, Lieberman DE, Jin L, Tabin CJ, Morgan BA, Sabeti PC (2013) Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152:691–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato T, Miyata K, Sonobe M, Yamashita S, Tamano M, Miura K, Kanai Y, Miyamoto S, Sakuma T, Yamamoto T, Inui M, Kikusui T, Asahara H, Takada S (2013) Production of Sry knockout mouse using TALEN via oocyte injection. Sci Rep 3:3136

    PubMed Central  PubMed  Google Scholar 

  • Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127:3215–3226

    CAS  PubMed  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:472–476

    CAS  PubMed  Google Scholar 

  • Li C, Qi R, Singleterry R, Hyle J, Balch A, Li X, Sublett J, Berns H, Valentine M, Valentine V, Sherr CJ (2014) Simultaneous gene editing by injection of mRNAs encoding transcription activator-like effector nucleases into mouse zygotes. Mol Cell Biol 34:1649–1658

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, Si W, Zhou J, Tan T, Li T, Ji S, Xue Z, Luo Y, Cheng L, Zhou Q, Li S, Sun YE, Ji W (2014a) TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323–328

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lv X, Tan R, Liu T, Chen T, Li M, Liu Y, Nie F, Wang X, Zhou P, Chen M, Zhou Q (2014b) A modified TALEN-based strategy for rapidly and efficiently generating knockout mice for kidney development studies. PLoS One 9:e84893

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Zhou X, Zhu Y, Chen ZF, Yu B, Wang Y, Zhang CC, Nie YH, Sang X, Cai YJ, Zhang YF, Zhang C, Zhou WH, Sun Q, Qiu Z (2014c) Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neurosci Bull 30:381–386

    Article  CAS  PubMed  Google Scholar 

  • Low BE, Krebs MP, Joung JK, Tsai SQ, Nishina PM, Wiles MV (2014) Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest Ophthalmol Vis Sci 55:387–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsugami TR, Tanemura K, Mieda M, Nakatomi R, Yamada K, Kondo T, Ogawa M, Obata K, Watanabe M, Hashikawa T, Tanaka K (2006) Indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci U S A 103:12161–12166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menke DB (2013) Engineering subtle targeted mutations into the mouse genome. Genesis 51:605–618

    CAS  PubMed  Google Scholar 

  • Meyer M, de Angelis MH, Wurst W, Kühn R (2010) Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A 107:15022–15026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer M, Ortiz O, Hrabé de Angelis M, Wurst W, Kühn R (2012) Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc Natl Acad Sci U S A 109:9354–9359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyanari Y, Ziegler-Birling C, Torres-Padilla ME (2013) Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol 20:1321–1324

    Article  CAS  PubMed  Google Scholar 

  • Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Namekata K, Kimura A, Kawamura K, Guo X, Harada C, Tanaka K, Harada T (2013) Dock3 attenuates neural cell death due to NMDA neurotoxicity and oxidative stress in a mouse model of normal tension glaucoma. Cell Death Differ 20:1250–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panda SK, Wefers B, Ortiz O, Floss T, Schmid B, Haass C, Wurst W, Kühn R (2013) Highly efficient targeted mutagenesis in mice using TALENs. Genetics 195:703–713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan HY, Du B, Liu B, Liu M, Li D (2013) High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res 41:e120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raychaudhuri S (2011) Mapping rare and common causal alleles for complex human diseases. Cell 147:57–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single App knock-in mouse models of Alzheimer's disease. Nat Neurosci 17:661–663

    Article  CAS  PubMed  Google Scholar 

  • Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed Central  PubMed  Google Scholar 

  • Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer D, Peters A, Wirtz T, Mai M, Ackermann J, Thabet Y, Schmidt J, Weighardt H, Wunderlich FT, Degen J, Schultze JL, Beyer M (2014) Efficient genome engineering by targeted homologous recombination in mouse embryos using transcription activator-like effector nucleases. Nat Commun 5:3045

    Article  PubMed  Google Scholar 

  • Sung YH, Baek IJ, Seong JK, Kim JS, Lee HW (2012) Mouse genetics: catalogue and scissors. BMB Rep 45:686–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31:23–24

    Article  CAS  PubMed  Google Scholar 

  • Sur IK, Hallikas O, Vähärautio A, Yan J, Turunen M, Enge M, Taipale M, Karhu A, Aaltonen LA, Taipale J (2012) Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 338:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, Südhof TC (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318:71–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takada S, Sato T, Ito Y, Yamashita S, Kato T, Kawasumi M, Kanai-Azuma M, Igarashi A, Kato T, Tamano M, Asahara H (2013) Targeted gene deletion of miRNAs in mice by TALEN system. PLoS One 8:e76004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  • Veltman JA, Brunner HG (2012) De novo mutations in human genetic disease. Nat Rev Genet 13:565–575

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hu YC, Markoulaki S, Welstead GG, Cheng AW, Shivalila CS, Pyntikova T, Dadon DB, Voytas DF, Bogdanove AJ, Page DC, Jaenisch R (2013) TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol 31:530–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watase K, Hashimoto K, Kano M, Yamada K, Watanabe M, Inoue Y, Okuyama S, Sakagawa T, Ogawa S, Kawashima N, Hori S, Takimoto M, Wada K, Tanaka K (1998) Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10:976–988

    Article  CAS  PubMed  Google Scholar 

  • Wefers B, Panda SK, Ortiz O, Brandl C, Hensler S, Hansen J, Wurst W, Kühn R (2013) Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat Protoc 8:2355–2379

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, Yang Z, Wu SQ, Chen L, Han J (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Strategic Research Program for Brain Sciences and Grant-in-Aid for Science Research from Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant from Medical Research Institute, Tokyo Medical and Dental University. I thank K Tanaka, R Imahashi, H Ishikubo, and T Usami (Tokyo Medical and Dental University), and T Yamamoto, and T Sakuma (Hiroshima University) for technical support and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi Aida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Aida, T. (2015). Genome Editing in Mice Using TALENs. In: Yamamoto, T. (eds) Targeted Genome Editing Using Site-Specific Nucleases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55227-7_11

Download citation

Publish with us

Policies and ethics