Skip to main content

Verification of Independent Existence Theory Depended on the Market Equilibrium Model: Based on the Great Discrepancy of the Benefits in Generation Base vs. the Benefits in Incidence Base

  • Chapter
  • First Online:
Economic Effects of Public Investment

Part of the book series: New Frontiers in Regional Science: Asian Perspectives ((NFRSASIPER,volume 1))

  • 309 Accesses

Abstract

Jan Tinbergen’s, “The Appraisal of Road Construction: Two Calculation Schemes [18],” that appeared in RE & Stat. on August 1957, which gave us a great profound impression, coincided with the mentality of the times when we are about to study on the real economic research of expressways, right on the heels of Report on Kobe–Nagoya Expressway Survey (for the Ministry of Construction, Government of Japan, August 8, 1956, 188 pp.) by a group of experts headed by Ralph J. Watkins. (10 months later, the introductory paper of [18] by Yukihide Okano came out in the periodical: Expressways, Express Highway Research Foundation of Japan.)

This chapter is written based on [3, 68].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms “goods ” and “commodities” are used to include “services.”

  2. 2.
    $$ {\sum}_{i=2}^4{Q}_{1i}\equiv 1 $$
    (9.50′)
  3. 3.

    Transition from (9.48), (9.49) to (9.58), (9.59)~

  4. 4.
    $$ {Q}_{12} \log {a}_0-{Q}_{13} \log {a}_1-{Q}_{14} \log {a}_2={\displaystyle \sum_{i=2}^4{Q}_{1i} \log {a}_{i-2}};\;{Q}_{12} \log {\omega}_0+{Q}_{13} \log {\omega}_1+{Q}_{14} \log {\omega}_2={\displaystyle \sum_{i=2}^4{Q}_{1i}{\omega}_{i-2}};{Q}_{12} \log \psi -{Q}_{13} \log \psi -{Q}_{14} \log \psi ={\displaystyle \sum_{i=2}^4{Q}_{1i} \log \psi } $$
  5. 5.
    figure s
  6. 6.

    See (9.a1) and (9.e) of Addendum to 9.1.5.

  7. 7.

    See (9.24), (9.25), and (9.26) of 9.1.5.

  8. 8.

    [ ]* and ( )* are not a matrix but a column vector.

  9. 9.

    The 1 × log p r of the 4th term in the right-hand side of (9.a4) removed to the 2nd term of the left hand side of (9.a6). The 2nd term of (9.a5) will be entered into the central term of eq. (9.68). Remained term appears in the 4th term of (9.a6). Namely, by the [1 − B11 r] of (9.a5), the 4th term of (9.a4) is divided into two parts.

  10. 10.

    \( {B}_{i1}^r \log {k}_r-{\displaystyle \sum_{s=2}^{M+2}{B}_{is}^r \log {\alpha}_{s-2,r}} \) = Eq. (9.67).

  11. 11.

    Due to E 11 = 0, the 1st term is zero.

  12. 12.

    Eq. (9.73) \( \to {\beta}_r^y\cdot {\alpha}_{ir}\Leftarrow {\beta}_{ir}^x \) → To substitute.

  13. 13.

    Due to assumption (iii) of 9.1.3., that is, E 22 = 0, the 1st term is zero.

  14. 14.

    The 1st term is zero, due to E 33 .

  15. 15.

    i ≠ j: The meaning is that D ii is excluded.

  16. 16.

    μ j  + μ j  = 0.

  17. 17.

    B ii  = 0 (by definition).

  18. 18.

    The identity (9.53) of 9.1.8. can be applied.

  19. 19.

    A 11 B 1j  = ((c)); A 12 B 2j  → ((e)).

  20. 20.

    (9.52) can be applied.

  21. 21.

    The A ii only remains, others are to be zero.

  22. 22.

    E 01 = 1, from (ii) (3) of 9.1.3.

  23. 23.

    E 1 − 2, 1 B 11 = E i − 2, 1 B j1 of (5) above is substituted.

  24. 24.

    Here, the 1st term in the left hand side of eq. (5) is substituted for every term of eq. (3)′ corresponding to respective subscripts (i = 2 … M + 2).

  25. 25.

    Definition (9.75) is substituted for the denominator.

  26. 26.

    Here, subscript 1 shows to be transport service industry and subscript M to be resource industry , respectively.

  27. 27.

    Repeatedly, the direct benefits in generation base are different from the intention of transport researchers in the early stage and are vague depending on the way of assumption of the partial equilibrium.

  28. 28.

    The contents of [8] are completely same as those of [7].

References

The contents of [8] are completely same as those of [7].

  1. Kohno, Hirotada. 1976. Formation process of the indirect economic effects. Expressways and Automobiles XIX(4): 21–29.

    Google Scholar 

  2. Kohno, H. 1979. Valuation of social benefits. In Modern auto transportation treatise, ed. Genpachiro Konno and Yukihide Okano, 108–132. Tokyo: The University of Tokyo Press.

    Google Scholar 

  3. Kohno, Hirotada. 1983. Regional development effects brought about by the public investments. Studies in regional science, Vol. 13, The 19th JSRSA annual meeting report of 1982, Japan section of RSA, Dec. (S.58), pp. 57–81.

    Google Scholar 

  4. Kohno, H. 1987. Social benefits of transport investment—Theoretical synthesis. In OECD highway committee: Expert meeting and symposium in the appraisal of social and economic effects of road network improvement, pp. 80–92, Yokohama, May 26–28th.

    Google Scholar 

  5. Kohno, H. 2007. Simultaneous equilibrium of industries and enterprises in the long range—In the case where there is the Marshallian external economies. In The principle of economics III: Micro economicsmacro economics, pp. 116–121, Socio Economic Planning Office, April 9th.

    Google Scholar 

  6. Kohno, H., and Y. Higano. 1981. Comprehensive valuation (p. 274). In The regional science in Japan: Survey II, studies in regional science, Vol. II, pp. 221–330, JRSA.

    Google Scholar 

  7. Kohno, Hirotada, and Yoshiro, Higano. 1982. Synthesis of Tinbergen and Mohring’s propositions on the indirect benefits of public investment. A paper presented to the 29th North American meetings, Pittsburgh, November 12–14.

    Google Scholar 

  8. Kohno, Hirotada, and Yoshiro, Higano. 1993. A proof of the existence of Tinbergen multiplier on the indirect benefits of public investment. A paper prepared for the 40th North American meetings of the RSAI, Houston, November 11–14.

    Google Scholar 

  9. Hicks, John Richard. 1939. Value and capital. Oxford: The Clarendon Press in the University of Oxford.

    Google Scholar 

  10. Hicks, J.R. 1951. Supplement to the chap.2 consumer surplus. In Value and capital (Translated by Takuma Yasui, Hisao Kumagai, Iwanamigendai Sosho, pp. 53–59).

    Google Scholar 

  11. Julius, Margolis. 1957. Secondary benefits, external economies, and the justification of public investment. The Review of Economics and Statistics XXXIX(3): 284–291. (Translated by Katsuyuki Kurashimo. 1962. Expressways and Automobiles 5 (12): 52–59).

    Google Scholar 

  12. Meade, J.E. 1952. External economies and diseconomies in a competitive situation. Economic Journal LXII(245): 54–67.

    Article  Google Scholar 

  13. Mohring, Herbert, and Mitchell Harwitz. 1962. Highway benefits—An analytical framework. Evanston: The Transportation Center at Northwestern University by Northwestern University Press.

    Google Scholar 

  14. Nikaido, Fukukane. 1960. Mathematical method of modern economics—Introductory analyses by topological mathematics. Tokyo: Iwanami-shoten.

    Google Scholar 

  15. The Nikkei. 2015. Traffic volumes of circular highways of central Tokyo such as Loop 7, etc. are cutted down of 5 percent; and, Congestion loss time of 40 percent owing to the completion of circumferential expressway. p. 35, April 25th.

    Google Scholar 

  16. Samuelson, Paul A. 1966. Constancy of the marginal utility of income. In The collected scientific papers of Paul A. Samuelson, vol. 1, ed. Joseph E. Stiglitz, 37–53. Cambridge, MA: MIT Press.

    Google Scholar 

  17. Scitovsky, Tibor. 1954. Two concepts of external economies. Journal of Political Economy LXII(2): 143–151.

    Article  Google Scholar 

  18. Tinbergen, Jan. 1957. The appraisal of road construction: Two calculation schemes. The Review of Economics and Statistics XXXIX(3): 241–249. (Translated by Yukihide Okano. 1958. Expressways 1(2): 37–47 & 50.).

    Article  Google Scholar 

  19. Yasui, Takuma, and Fukuoka, Masao. 1984. Special talk: L. Walras and the modern economics (modern economics series No.69). Weekly Toyo Keizai a special issue, April 20th, pp. 54–66.

    Google Scholar 

  20. Yasui, Takuma, and Fukuoka, Masao. 1984. Special talk continued: the 150th memory of L. Walras birth and the modern economics (modern economics series No. 70). Weekly Toyo Keizai a special issue, September. 27th, pp. 100–108.

    Google Scholar 

  21. Kanemoto, Y., and K. Mera. 1985. General equilibrium analysis of the benefits of large transportation improvement. Regional Science and Economics 15: 343–363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

9.1.1 Result of Simulation

Simulation results of the models I, II, and III are as follows:

[Model I (M = 4)]

$$ \widehat{p} \equiv \left({\widehat{p}}_1,{\widehat{p}}_2,\dots, {\widehat{p}}_M\right)=\left(4.0223,\ 3.7626,\ 3.5795,\ 3.5202\right); $$
(9.1a)
$$ \tilde{p} \equiv \left({\tilde{p}}_1,{\tilde{p}}_2,\dots, {\tilde{p}}_M\right)=\left(3.6674,\ 3.7489,\ 3.5398,\ 3.4184\right); $$
(9.2a)
$$ {\widehat{Y}}_I \equiv \left({\widehat{Y}}_1,{\widehat{Y}}_2,\dots, {\widehat{Y}}_M\right)=\left(6.5326,\ 0.40133,\ 0.71896,\ 1.3065\right); $$
(9.3a)
$$ {\tilde{Y}}_I \equiv \left({\tilde{Y}}_1,{\tilde{Y}}_2\dots, {\tilde{Y}}_M\right)=\left(7.1077,\ 0.40806,\ 0.72624,\ 1.3372\right); $$
(9.4a)
$$ {\widehat{x}}_0 \equiv \left({\widehat{x}}_{01},{\widehat{x}}_{02},\dots, {\widehat{x}}_{0M}\right)=\left(15.77,\ 0.68959,\ 1.3468,\ 2.7134\right); $$
(9.5a)
$$ {\tilde{x}}_0 \equiv \left({\tilde{x}}_{01},{\tilde{x}}_{02},\dots, {\tilde{x}}_{0M}\right)=\left(15.64,\ 0.69860,\ 1.3453,\ 2.6970\right); $$
(9.6a)
$$ {\widehat{x}}_I \equiv \left({\widehat{x}}_{21},{\widehat{x}}_{32},\dots, {\widehat{x}}_{M,M-1},{\widehat{x}}_{1M}\right)=\left(2.0956,\ 0.18703,\ 0.27537,\ 0.35436\right); $$
(9.7a)
$$ {\tilde{x}}_I \equiv \left({\tilde{x}}_{21},{\tilde{x}}_{32},\dots, {\tilde{x}}_{M,M-1},{\tilde{x}}_{1M}\right)=\left(2.4336,\ 0.19159,\ 0.28326,\ 0.38639\right); $$
(9.8a)
$$ \widehat{y} \equiv \left({\widehat{y}}_1,{\widehat{y}}_2,\dots, {\widehat{y}}_M\right)=\left(29.537,\ 126.33,\ 99.599,\ 67.518\right); $$
(9.9a)
$$ \tilde{y} \equiv \left({\tilde{y}}_1,{\tilde{y}}_2,\dots, {\tilde{y}}_M\right)=\left(32.053,\ 125.42,\ 99.625,\ 68.774\right); $$
(9.10a)
$$ \widehat{\pi} \equiv \left({\widehat{\pi}}_1,{\widehat{\pi}}_2,\dots, {\widehat{\pi}}_M\right)=\left(2.628,\ 0.151,\ 0.2574,\ 0.4599\right); $$
(9.11a)
$$ \tilde{\pi} \equiv \left({\tilde{\pi}}_1,{\tilde{\pi}}_2,\dots, {\tilde{\pi}}_M\right)=\left(1.303,\ 0.153,\ 0.2571,\ 0.4571\right); $$
(9.12a)
$$ \widehat{s} \equiv \left({s}_1\left({\widehat{y}}_1\right),{s}_2\left({\widehat{y}}_2\right),\dots, {s}_M\left({\widehat{y}}_M\right)\right)=\left(0.33856,\ 1.9356,\ 1.3803,\ 0.84248\right); $$
(9.13a)
$$ \tilde{s} \equiv \left({s}_1\left({\tilde{y}}_1\right),{s}_2\left({\tilde{y}}_2\right),\dots, {s}_M\left({\tilde{y}}_M\right)\right)=\left(0.34674,\ 1.9327,\ 1.3804,\ 0.84617\right); $$
(9.14a)
$$ {\widehat{I}}_y=1188.372; $$
(9.15a)
$$ {\tilde{I}}_y=1175.499; $$
(9.16a)
$$ {\widehat{\mu}}_y \equiv 1/{\widehat{I}}_y=0.84149\times {10}^{-3}; $$
(9.17a)
$$ {\tilde{\mu}}_y \equiv 1/{\tilde{I}}_y=0.85700\times {10}^{-3}; $$
(9.18a)
$$ {p}_1^{\ast }=3.96893; $$
(9.19a)
$$ {Y}_1^{\ast }=6.7788; $$
(9.20a)
$$ {Y}_4^{\ast }=1.3293; $$
(9.21a)
$$ {x}_{14}^{\ast }=0.37471; $$
(9.22a)
$$ {y}_1^{\ast }=29.942; $$
(9.23a)
$$ {\pi}_1^{\ast }=3.2498; $$
(9.24a)
$$ {\pi}_4^{\ast }=0.47872; $$
(9.25a)
$$ {s}_1^{\ast } \equiv {s}_1\left({y}_1^{\ast}\right)=0.33993; $$
(9.26a)
$$ {I}_y^{\ast }=1196.489; $$
(9.27a)
$$ {\mu}_y^{\ast }=0.83578\times {10}^{-3}; $$
(9.28a)
$$ \widehat{\Omega}=\left[\begin{array}{cccc}\hfill -6.4674\times {10}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1.1453\times {10}^2\hfill \\ {}\hfill -7.1251\times 10\hfill & \hfill -1.4140\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -3.2489\times {10}^2\hfill & \hfill -1.6319\times {10}^3\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -2.5560\times {10}^2\hfill & \hfill -1.2932\times {10}^3\hfill \end{array}\right]; $$
(9.29a)
$$ \tilde{\Omega}=\left[\begin{array}{cccc}\hfill -1.4145\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1.2488\times {10}^2\hfill \\ {}\hfill -1.8009\times {10}^2\hfill & \hfill -1.4377\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -3.3283\times {10}^2\hfill & \hfill -1.6484\times {10}^3\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -2.6292\times {10}^2\hfill & \hfill -1.3236\times {10}^3\hfill \end{array}\right]; $$
(9.30a)

Below, models II and III:

[Model II (M = 5)]

$$ \widehat{p} = \left(3.8614,\ 3.7253,\ 3.5636,\ 3.3815,\ 3.3546\right); $$
(9.31a)
$$ \tilde{p} = \left(3.5901,\ 3.7239,\ 3.5511,\ 3.3522,\ 3.2779\right); $$
(9.32a)
$$ {\widehat{Y}}_{{}_1} = \left(4.6510,\ 0.30312,\ 0.49204,\ 0.67183,\ 0.96192\right); $$
(9.33a)
$$ {\tilde{Y}}_{{}_1} = \left(4.9708,\ 0.30703,\ 0.49401,\ 0.67523,\ 0.97904\right); $$
(9.34a)
$$ {\widehat{x}}_{{}_0} = \left(10.776,\ 0.49685,\ 0.85917,\ 1.2268,\ 1.9039\right); $$
(9.35a)
$$ {\tilde{x}}_{{}_0} = \left(10.707,\ 0.50307,\ 0.85958,\ 1.2223,\ 1.8934\right); $$
(9.36a)
$$ {\widehat{x}}_{{}_1} = \left(1.4463,\ 0.14576,\ 0.21216,\ 0.24379,\ 0.25906\right); $$
(9.37a)
$$ {\tilde{x}}_{{}_1} = \left(1.6773,\ 0.14811,\ 0.21456,\ 0.24859,\ 0.27711\right); $$
(9.38a)
$$ \widehat{y}=\left(20.604,\ 106.79,\ 89.306,\ 70.586,\ 47.434\right); $$
(9.39a)
$$ \tilde{y}=\left(21.998,\ 106.04,\ 88.961,\ 70.678,\ 48.187\right); $$
(9.40a)
$$ \widehat{\pi}=\left(1.7960,\ 0.1129,.\mathrm{0.1753},\ 0.2272,\ 0.3227\right); $$
(9.41a)
$$ \tilde{\pi} = \left(0.8923,\ 0.1143,\ 0.1754,\ 0.2264,\ 0.3209\right); $$
(9.42a)
$$ \widehat{s}=\left(0.20170,\ 1.5569,\ 1.1979,\ 0.85137,\ 0.51458\right); $$
(9.43a)
$$ \tilde{s} = \left(0.20606,\ 1.5546,\ 1.1969,\ 0.85163,\ 0.51668\right); $$
(9.44a)
$$ {\widehat{I}}_y = 1193.434; $$
(9.45a)
$$ {\tilde{I}}_y=1184.6469; $$
(9.46a)
$$ {\widehat{\mu}}_y = 0.83792\times {10}^{-3}; $$
(9.47a)
$$ {\tilde{\mu}}_y=0.84413\times {10}^{-3}; $$
(9.48a)
$$ {p}_1^{*}=3.8355; $$
(9.49a)
$$ {Y}_1^{*}=4.7376; $$
(9.50a)
$$ {Y}_5^{*} = 0.9702; $$
(9.51a)
$$ {x}_{15}^{*} = 0.26632; $$
(9.52a)
$$ {y}_1^{*} = 20.744; $$
(9.53a)
$$ {\pi}_1^{*} = 2.0074; $$
(9.54a)
$$ {\pi}_5^{*} = 0.32933; $$
(9.55a)
$$ {s}_1^{*} = 0.20215; $$
(9.56a)
$$ {I}_y^{*} = 1196.214; $$
(9.57a)
$$ {\mu}_y^{*} = 0.83597\times {10}^{-3}; $$
(9.58a)
$$ \widehat{\varOmega}=\left[0\begin{array}{ccccc}\hfill -4.6200\times {10}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -8.2036\times 10\hfill \\ {}\hfill -4.8211\times {10}^1\hfill & \hfill -1.1721\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -2.8376\times {10}^2\hfill & \hfill -1.4368\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -2.7425\times {10}_2\hfill & \hfill -1.3168\times {10}_3\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1.8203\times {10}^2\hfill & \hfill -9.4910\times {10}^2\hfill \end{array}\right]; $$
(9.59a)
$$ \tilde{\varOmega}=\left[\begin{array}{ccccc}\hfill -9.9088\times {10}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -8.7753\times 10\hfill \\ {}\hfill -1.2301\times {10}^2\hfill & \hfill -1.1872\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -2.8832\times {10}^2\hfill & \hfill -1.4425\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -2.7678\times {10}^2\hfill & \hfill -1.3235\times {10}^3\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1.8562\times {10}^2\hfill & \hfill -9.6600\times {10}^2\hfill \end{array}\right]; $$
(9.60a)

[Model III (M = 6)]

$$ \widehat{p}=\left(3.7251,\ 3.6899,\ 3.5665,\ 3.3725,\ 3.2136,\ 3.2101\right); $$
(9.61a)
$$ \tilde{p}=\left(3.5210,\ 3.6923,\ 3.5626,\ 3.3630,\ 3.1923,\ 3.1531\right); $$
(9.62a)
$$ {\widehat{Y}}_I=\left(3.4628,\ 0.24567,\ 0.38262,\ 0.48758,\ 0.58389,\ 0.72342\right); $$
(9.63a)
$$ {\tilde{Y}}_I=\left(3.6456,\ 0.24837,\ 0.38351,\ 0.48786,\ 0.58558,\ 0.73318\right); $$
(9.64a)
$$ {\widehat{x}}_0=\left(7.7396,\ 0.38979,\ 0.64136,\ 0.8361,\ 1.0320,\ 1.3701\right); $$
(9.65a)
$$ {\tilde{x}}_0=\left(7.7017,\ 0.39433,\ 0.64216,\ 0.83674,\ 1.0281,\ 1.3639\right); $$
(9.66a)
$$ {\widehat{x}}_{{}_{{}_I}}=\left(1.0488,\ 0.11946,\ 0.17399,\ 0.19956,\ 0.20458,\ 0.19326\right); $$
(9.67a)
$$ {\tilde{x}}_I=\left(1.2168,\ 0.12098,\ 0.17470,\ 0.20044,\ 0.20750,\ 0.20354\right); $$
(9.68a)
$$ \widehat{y}=\left(15.303,\ 92.695,\ 79.918,\ 67.613,\ 53.217,\ 35.517\right); $$
(9.69a)
$$ \tilde{y}=\left(16.105,\ 92.147,\ 79.584,\ 67.446,\ 53.290,\ 35.968\right); $$
(9.70a)
$$ \widehat{\pi}=\left(1.2900,\ 0.0907,\ 0.1365,\ 0.1644,\ 0.1876,\ 0.2322\right); $$
(9.71a)
$$ \tilde{\pi}=\left(0.6418,\ 0.0917,\ 0.1366,\ 0.1641,\ 0.1869,\ 0.2312\right); $$
(9.72a)
$$ \widehat{s}=\left(0.12991,\ 1.2941,\ 1.0431,\ 0.80263,\ 0.56777,\ 0.3400\right); $$
(9.73a)
$$ \tilde{s}=\left(0.13234,\ 1.2924,\ 1.0421,\ 0.80216,\ 0.56796,\ 0.3412\right); $$
(9.74a)
$$ {\widehat{I}}_y=1197.118; $$
(9.75a)
$$ {\tilde{I}}_y=1190.8111; $$
(9.76a)
$$ {\widehat{\mu}}_y=0.83534\times {10}^{-3}; $$
(9.77a)
$$ {\tilde{\mu}}_y=0.83976\times {10}^{-3}; $$
(9.78a)
$$ {p}_1^{*}=3.7218; $$
(9.79a)
$$ {Y}_1^{*}=3.4711; $$
(9.80a)
$$ {Y}_6^{*}=0.72422; $$
(9.81a)
$$ {x}_{16}^{*}=0.19394; $$
(9.82a)
$$ {y}_1^{*}=15.317; $$
(9.83a)
$$ {\pi}_1^{*}=1.3095; $$
(9.84a)
$$ {\pi}_6^{*}=0.23284; $$
(9.85a)
$$ {s}_1^{*}=0.12995; $$
(986a)
$$ {I}_y^{*}=1197.377; $$
(9.87a)
$$ {\mu}_{{}_y}^{*}=0.83516\times {10}^{-3}; $$
(9.88a)
$$ \widehat{\Omega}=\left[\begin{array}{cccccc}\hfill -3.4464\times {10}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -6.083\times 10\hfill \\ {}\hfill -3.4460\times 10\hfill & \hfill -1.0023\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -2.4776\times {10}^2\hfill & \hfill -1.2699\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -2.6565\times {10}^2\hfill & \hfill -1.2436\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -2.0976\times {10}^2\hfill & \hfill -1.036\times {10}^3\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1.324\times {10}^2\hfill & \hfill -7.1653\times {10}^2\hfill \end{array}\right]; $$
(9.89a)
$$ \tilde{\Omega}=\left[\begin{array}{cccccc}\hfill -7.2745\times {10}^2\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -6.4067\times 10\hfill \\ {}\hfill -8.8657\times 10\hfill & \hfill -1.0134\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill -2.5092\times {10}^2\hfill & \hfill -1.2729\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -2.6673\times {10}^2\hfill & \hfill -1.2443\times {10}^3\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -2.1069\times {10}^2\hfill & \hfill -1.0390\times {10}^3\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill -1.3428\times {10}^2\hfill & \hfill -7.2620\times {10}^2\hfill \end{array}\right]; $$
(9.90a)

Note that, in all the models, \( \widehat{\Omega} \) and \( \tilde{\Omega} \) are dominant diagonal matrixes which have negative diagonal elements, which imply that the equilibrium of the market is locally stable about both \( \widehat{P} \) and \( \tilde{P} \).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kohno, H. (2016). Verification of Independent Existence Theory Depended on the Market Equilibrium Model: Based on the Great Discrepancy of the Benefits in Generation Base vs. the Benefits in Incidence Base. In: Economic Effects of Public Investment. New Frontiers in Regional Science: Asian Perspectives, vol 1. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55224-6_9

Download citation

Publish with us

Policies and ethics