Orbifold Holomorphic Discs and Crepant Resolutions

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


This is a note of a lecture at the conference, “Real and Complex submanifolds”. We survey the definition and properties of orbifold holomorphic discs and an application to crepant resolution conjecture


Modulus Space Twisted Sector Maslov Index Quantum Cohomology Toric Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Auroux, D.: Mirror symmetry and T-duality in the complement of an anti canonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007)MATHMathSciNetGoogle Scholar
  2. 2.
    Byran, J., Graver, T.: The crepant resolution conjecture. Algebraic Geometry-Seattle 2005 Part 1. In: Proc. Sympos. Pure Math., vol. 80, pp. 23–42. The American Mathematical Society, Providence (2009)Google Scholar
  3. 3.
    Chan, K.: A formula equating open and closed Gromov–Witten invariants and its applications to mirror symmetry. Pac. J. Math. 254(2), 275–293 (2011)CrossRefMATHGoogle Scholar
  4. 4.
    Chan, K., Cho, C.-H., Lau, S.-C., Tseng, H.-H.: Lagrangian Floer superpotentials and crepant resolutions for toric orbifolds. Commun. Math. Phys. 328(1), 83–130 (2014)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chan, K., Lau, S.-C., Leung, N.-C., Tseng, H.-H.: Open Gromov–Witten invariants, mirror maps, and Seidel representations for toric manifolds. Preprint arXiv: 1209.6119Google Scholar
  6. 6.
    Chen, W., Ruan, Y.: Orbifold Gromov–Witten theory, orbifolds in mathematics and physics. Contemp. Math. 310(210), 25–85 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, W., Ruan, Y.: A new cohomology theory of orbifolds. Commun. Math. Phys. 248(1) 1–31 (2004)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cho, C.-H., Oh, Y.-G.: Floer cohomology and disc instantons of Lagrangian torus fibers in toric Fano manifolds. Asian J. Math. 10, 773–814 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cho, C.-H., Poddar, M.: Holomorphic orbidiscs and Lagrangian Floer cohomology of symplectic toric orbifolds. J. Differ. Geom. arXiv: 1206.3994Google Scholar
  10. 10.
    Cho, C.-H., Shin, H.-S.: Chern–Weil Maslov index and its orbifold analogue. Preprint arXiv: 1202.0556Google Scholar
  11. 11.
    Coates, T., Ruan, Y.: Quantum cohomology and reprepant resolutions: a conjecture. Ann. Inst. Fourier (Grenoble) 63(2), 431–478 (2013)Google Scholar
  12. 12.
    Coates, T., Iritani, H., Tseng, H.-H.: Wall-crossings in toric Gromov–Witten theory. I. Crepant examples. Geom. Topol. 13(5), 2675–2744 (2009)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Coates, T., Corti, A., Iritani, H., Tseng, H.-H.: A mirror theorem for toric stacks. arXiv: 1310.4163Google Scholar
  14. 14.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory-anomaly and obstruction, Part I, II, AMS/IP Studies in Adv. Math, 46.1. AMS. International Press (2009)Google Scholar
  15. 15.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian Floer theory for toric manifolds I. Duke Math. J. 151(1), 23–174 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Toric degenerations and non-displaceable Lagrangian tori in S 2 × S 2. Int. Math. Res. Not. 13, 2942–2993 (2012)MathSciNetGoogle Scholar
  17. 17.
    Hori, K., Vafa, C.: Mirror symmetry. arXiv: hep-th/0002222v3Google Scholar
  18. 18.
    Ruan, Y.: The cohomology ring of crepant resolutions of orbifolds. Gromov–Witten theory of spin curves and orbifolds, contemporary mathematics, vol. 403, pp. 117–126. The American Mathematical Society, Providence (2006)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations