Totally Geodesic Submanifolds of Riemannian Symmetric Spaces

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


The index of a Riemannian manifold is defined as the minimal codimension of a totally geodesic submanifold. In this note we discuss two recent results by the author and Olmos (Berndt and Olmos, On the index of symmetric spaces, preprint, arXiv:1401.3585) and some related topics. The first result states that the index of an irreducible Riemannian symmetric space is bounded from below by the rank of the symmetric space. The second result is the classification of all irreducible Riemannian symmetric spaces of noncompact type whose index is less or equal than three.


Riemannian Manifold Symmetric Space Maximal Dimension Isotropy Representation Riemannian Symmetric Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berndt, J., Console, S., Olmos, C.: Submanifolds and Holonomy. Chapman & Hall/CRC, Boca Raton (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Berndt, J., Olmos, C.: On the index of symmetric spaces, preprint, arXiv:1401.3585 (2014)Google Scholar
  3. 3.
    Cartan, É.: Leçons sur la géométrie des espaces de Riemann, 2nd edn. Gauthier-Villars, Paris (1951)MATHGoogle Scholar
  4. 4.
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. American Mathematical Society, Providence (2001)MATHGoogle Scholar
  5. 5.
    Klein, S.: Totally geodesic submanifolds of the complex quadric. Differ. Geom. Appl. 26, 79–96 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Klein, S.: Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram. Geom. Dedicata 138, 25–50 (2009)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Klein, S.: Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians. Trans. Am. Math. Soc. 361, 4927–4967 (2010)CrossRefGoogle Scholar
  8. 8.
    Klein, S.: Totally geodesic submanifolds of the exceptional Riemannian symmetric spaces of rank 2. Osaka J. Math. 47, 1077–1157 (2010)MATHMathSciNetGoogle Scholar
  9. 9.
    Leung, D.S.P.: On the classification of reflective submanifolds of Riemannian symmetric spaces. Indiana Univ. Math. J. 24, 327–339 (1974). Errata: Indiana Univ. Math. J. 24, 1199 (1975)Google Scholar
  10. 10.
    Leung, D.S.P.: Reflective submanifolds. III. Congruency of isometric reflective submanifolds and corrigenda to the classification of reflective submanifolds. J. Differ. Geom. 14, 167–177 (1979)MATHGoogle Scholar
  11. 11.
    Онищик, А.Л.: О вполне геодезических подмногообразиях симметрических пространств. Геометрические методы в задачах анализа и алгебры 2, 64–85 (1980)Google Scholar
  12. 12.
    Wolf, J.A.: Elliptic spaces in Grassmann manifolds. Ill. J. Math. 7, 447–462 (1963)MATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonUK

Personalised recommendations