Real Hypersurfaces in Kähler Manifolds

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


We consider real hypersurfaces of compact Kähler manifolds and show that real hypersurfaces of Kähler manifolds induced by Morse functions have contact structures. As examples we consider preimages of regular values of Morse functions on complex projective spaces, and cosymplectic real hypersurfaces of the products of Kähler manifolds and torus.


Vector Field Contact Structure Real Hypersurface Morse Function Complex Projective Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013004848).


  1. 1.
    Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, vol. 203. Birkhäuser, Boston/Basel/Berlin (2002)Google Scholar
  2. 2.
    Blair, D.E., Goldberg, S.I.: Topology of almost contact manifolds. J. Differ. Geom. 1, 347–354 (1967)MATHMathSciNetGoogle Scholar
  3. 3.
    Calabi, E., Eckmann, B.: A class of complex manifold which are not algebraic. Ann. Math. 58, 494–500 (1953)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cho, Y.S.: Hurwitz number of triple ramified covers. J. Geom. Phys. 56(4), 542–555 (2008)CrossRefGoogle Scholar
  5. 5.
    Cho, Y.S.: Generating series for symmetric product spaces. Int. J. Geom. Methods Mod. Phys. 9(5), 1250045 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cho, Y.S.: Quantum type cohomologies on contact manifolds. Int. J. Geom. Methods Mod. Phys. 10(5), 1350012 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cho, Y.S.: Gromov-Witten type invariants on products of almost contact metric manifolds (preprint)Google Scholar
  8. 8.
    Cho, Y.S.: Quantum type cohomologies of cosymplectic manifolds (preprint)Google Scholar
  9. 9.
    Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant. Topology 38(5), 933–1048 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Janssens, D., Vanhecke, J.: Almost contact structures and curvature tensors. Kodai Math. J. 4, 1–27 (1981)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kontsevich, M., Manin, Y.: Gromov-Witten classes, quantum cohomology and enumerative geometry. Commun. Math. Phys. 164, 525–562 (1994)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    McDuff, D., Salamon, D.: J-holomorphic Curves and Quantum Cohomology. University Lecture Series, The American Mathematical Society, Provindence (1994)MATHGoogle Scholar
  13. 13.
    Milnor, J.: Morse Theory. Annals of Mathematics Studies. Princeton University Press, Princeton (1968)Google Scholar
  14. 14.
    Poor, W.: Differential Geometric Structures. McGraw-Hill, Inc., New York (1981)MATHGoogle Scholar
  15. 15.
    Tshikuna-Matamba, T.: Induced structures on the product of Riemannian manifolds. Int. Electron. J. Geom. 4(1), 15–25 (2011)MathSciNetGoogle Scholar
  16. 16.
    Witten, E.: Topological sigma models. Commun. Math. Phys. 118, 411–449 (1988)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Division of Mathematical and Physical SciencesCollege of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea

Personalised recommendations