The Geometry on Hyper-Kähler Manifolds of Type A

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


Hyper-Kähler manifolds of type A are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.


Complex Manifold Cohomology Class Homology Class Volume Growth Holomorphic Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, T., Kronheimer, P., LeBrun, C.: Complete Ricci-flat Kähler manifolds of infinite topological type. Commun. Math. Phys., 125, 637–642 (1989)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bishop, R.L., Crittenden, R.J.: Geometry on Manifolds. Academic Press, New York (1964)Google Scholar
  3. 3.
    Bielawski, R., Dancer, A.S.: The geometry and topology of toric hyperkähler manifolds. Comm. Anal. Geom. 8, 727–760 (2000)MATHMathSciNetGoogle Scholar
  4. 4.
    Goto, R.: On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method. Infinite Analysis, Advanced Series in Mathematical Physics, vol. 16, pp. 317–388 (1992)Google Scholar
  5. 5.
    Goto, R.: On hyper-Kähler manifolds of type A . Geom. Funct. Anal. 4(4), 424–454 (1994)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gromov, M., Lafontaine, J., Pansu, P.: Structures métriques pour les variétés riemanniennes. Cédic, Fernand Nathan, Paris (1981)MATHGoogle Scholar
  7. 7.
    Hattori, K.: The volume growth of hyper-Kähler manifolds of type A . J. Geom. Anal. 21(4), 920–949 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Hattori, K.: On hyperkähler manifolds of type A . Thesis, University of Tokyo (2010)Google Scholar
  9. 9.
    Hattori, K.: The holomorphic symplectic structures on hyper-Kähler manifolds of type A . Advances in Geometry, 14(4), 613–630, (2014)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Hitchin, N.J., Karlhede, A., Lindström, U., \(\mathrm{Ro\check{c}ek}\), M.: Hyper-Kähler metrics and supersymmetry. Comm. Math. Phys. 108(4), 535–589 (1987)Google Scholar
  11. 11.
    Harvey, R., Lawson Jr, H.B.: Calibrated geometries. Acta Math. 148(1), 47–157 (1982)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Konno, H.: Variation of toric hyper-Kähler manifolds. Int. J. Math. 14, 289–311 (2003)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Keio UniversityYokohama, KanagawaJapan

Personalised recommendations