The Warped Product Approach to GMGHS Spacetime

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


In the framework of Lorentzian multiply warped products we study the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) spacetime and the nonsmooth geodesic motion near hypersurfaces in the interior of the event horizon. We also investigate the geodesics of the GMGHS spacetime with C 0-warping functions.


Black Hole Event Horizon Black Hole Solution Geodesic Equation Null Geodesic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



J. Choi would like to acknowledge financial support from Korea Air Force Academy Grant (KAFA 14-02).


  1. 1.
    Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49 (1969)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Beem, J.K., Ehrlich, P.E., Easley, K.: Global Lorentzian Geometry (2nd edn.). Marcel Dekker, New York (1996)MATHGoogle Scholar
  3. 3.
    Beem, J.K., Ehrlich, P.E.: Singularities, incompleteness and the Lorentzian distance function. Math. Proc. Cambridge Phil. Soc. 86, 161–178 (1979)CrossRefGoogle Scholar
  4. 4.
    Choi, J.: Multiply warped products with nonsmooth metrics. J. Math. Phys. 41, 8163–8169 (2000)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Choi, J., Hong, S.T.: Warped product approach to universe with nonsmooth scale factor. J. Math. Phys. 45, 642–651 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hong, S.T., Choi, J., Park, Y.J.: Nonlinear Anal. 63, e493 (2005)CrossRefMATHGoogle Scholar
  7. 7.
    Hong, S.T., Choi, J., Park, Y.J.: (2+1) BTZ black hole and multiply warped product spacetimes. Gen. Relativ. Gravit. 35, 2105–2116 (2003)Google Scholar
  8. 8.
    Gad, R.M.: Astrophys. Space Sci. 330, 107 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Gibbons, G.W., Maeda, K.: Black holes and membranes in higher-dimensional theories with dilaton fields. Nuclear Phys. B 298, 741–775 (1988)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Garfinkle, D., Horowitz, G.T., Strominger, A.: Charged black holes in string theory. Phys. Rev. D 43, 3140–3143 (1991)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hioki, K., Miyamoto, U.: Hidden symmetries, null geodesics, and photon capture in the Sen black hole. Phys. Rev. D 78, 044007, 10pp. (2008)Google Scholar
  12. 12.
    Fernando, S.: Phys. Rev. D 85, 024033 (2012)CrossRefGoogle Scholar
  13. 13.
    Flores, J.L., Sánchez, M.: Geodesic connectedness of multiwarped spacetimes. J. Differ. Equ. 186, 1–30 (2002)CrossRefGoogle Scholar
  14. 14.
    Lichnerowicz, A.: Théories relativistes de la gravitation et de l’électromagntisme. Relativit générale et théories unitaires. Masson et Cie, Paris (1955)Google Scholar
  15. 15.
    Smoller, J., Temple, B.: Shock waves near the Schwarzchild radius and stability limits for stars. Phys. Rev. D 55, 7518–7528 (1997)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Smoller, J., Temple, B.: Cosmology with shock wave. Comm. Math. Phys. 210, 275–308 (2000)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hoskins, R.F.: Generalized Functions. Ellis Horwood, New York-Chichester-Brisbane (1979)Google Scholar
  18. 18.
    Marolf, D., Oriy, A.: Outgoing gravitational shock-wave at the inner horizon. arXiv:1109.5139v2 [gr-qc] 10 Dec 2012Google Scholar
  19. 19.
    Clark, C.: Elementary General Relativity. Wiley, New York (1980)Google Scholar
  20. 20.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefMATHGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Aerospace Research CenterChungbukKorea

Personalised recommendations