Examples of Non-Kähler Solvmanifolds Admitting Hodge Decomposition

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


We consider some Hodge theoretical properties (formality, hard-Lefschetz property, E 1-degeneration of Frölicher spectral sequence, \(\partial \bar{\partial }\)-Lemma and their twisted versions) on non-Kähler symplectic and complex manifolds. It is known that if nilmanifolds satisfy formality, hard-Lefschetz property, or \(\partial \bar{\partial }\)-Lemma, then they are only tori. Hodge theory on solvmanifolds are more complicated. We give non-Kähler solvmanifolds satisfying these properties.


Line Bundle Holomorphic Line Bundle Compact Complex Manifold Cochain Complex Compact Homogeneous Space 


  1. 1.
    Angella, D., Kasuya, H.: Bott-Chern cohomology of solvmanifolds. arXiv:1212.5708 (2013)Google Scholar
  2. 2.
    Angella, D., Kasuya, H.: Cohomologies of deformations of solvmanifolds and closedness of some properties. arXiv:1305.6709 (2013)Google Scholar
  3. 3.
    Angella, D., Tomassini, A.: On the \(\partial \overline{\partial }\)-Lemma and Bott-Chern cohomology. Invent. Math. 192(1), 71–81 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Arapura, D., Nori, M.: Solvable fundamental groups of algebraic varieties and Kähler manifolds. Compositio Math. 116(2), 173–188 (1999)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Benson, C., Gordon, C.S.: K\(\ddot{\mathrm{a}}\) hler and symplectic structures on nilmanifolds. Topology 27(4), 513–518 (1988)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Console, S., Fino, A.: Dolbeault cohomology of compact nilmanifolds. Transform. Groups 6(2), 111–124 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cordero, L.A., Fernández, M., Gray, A., Ugarte, L.: Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology. Trans. Am. Math. Soc. 352(12), 5405–5433 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Dekimpe, K.: Semi-simple splittings for solvable Lie groups and polynomial structures. Forum Math. 12(1), 77–96 (2000)MATHMathSciNetGoogle Scholar
  9. 9.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kahler manifolds. Invent. Math. 29(3), 245–274 (1975)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dungey, N., ter Elst, A.F.M.: Robinson, D.W.: Analysis on Lie Groups with Polynomial Growth. Birkhäuser, Boston (2003)Google Scholar
  11. 11.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)MATHGoogle Scholar
  12. 12.
    Hasegawa, K.: Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106(1), 65–71 (1989)CrossRefMATHGoogle Scholar
  13. 13.
    Hasegawa, K.: A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43(1), 131–135 (2006)MATHMathSciNetGoogle Scholar
  14. 14.
    Hasegawa, K.: Small deformations and non-left-invariant complex structures on six-dimensional compact solvmanifolds. Differ. Geom. Appl. 28(2), 220–227 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8, 289–331 (1960)MATHMathSciNetGoogle Scholar
  16. 16.
    Kasuya, H.: Formality and hard Lefschetz properties of aspherical manifolds. Osaka J. Math. 50 (2), 439–455 (2013)MATHMathSciNetGoogle Scholar
  17. 17.
    Kasuya, H.: Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems. J. Differ. Geom. 93, 269–298 (2013)MATHMathSciNetGoogle Scholar
  18. 18.
    Kasuya, H.: Techniques of computations of Dolbeault cohomology of solvmanifolds. Math. Z. 273, 437–447 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Kasuya, H.: The Frolicher spectral sequences of certain solvmanifolds. J. Geom. Anal. (2013). doi: 10.1007/s12220-013-9429-2Google Scholar
  20. 20.
    Kasuya, H.: Hodge symmetry and decomposition on non-Kähler solvmanifolds. J. Geom. Phys. 76, 61–65 (2014)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Kasuya, H.: de Rham and Dolbeault cohomology of solvmanifolds with local systems. Math. Res. Lett. 4, (2014) (to appear)Google Scholar
  22. 22.
    Kasuya, H.: Flat bundles and hyper-hodge decomposition on solvmanifolds. arXiv:1309.4264 (2013)Google Scholar
  23. 23.
    Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)MATHGoogle Scholar
  24. 24.
    Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. 59(2), 531–538 (1954)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Raghnathan, M.S.: Discrete Subgroups of Lie Groups. Springer, New York (1972)CrossRefGoogle Scholar
  26. 26.
    Rollenske, S.: Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds. J. Lond. Math. Soc. 79(2), 346–362 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Sakane, Y.: On compact complex parallelisable solvmanifolds. Osaka J. Math. 13(1), 187–212 (1976)MATHMathSciNetGoogle Scholar
  28. 28.
    Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)CrossRefMATHGoogle Scholar
  29. 29.
    Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1978)CrossRefGoogle Scholar
  30. 30.
    Yamada, T.: A pseudo-Kähler structure on a nontoral compact complex parallelizable solvmanifold. Geom. Dedicata 112, 115–122 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Institute of TechnologyMeguro, TokyoJapan

Personalised recommendations