Advertisement

Examples of Non-Kähler Solvmanifolds Admitting Hodge Decomposition

  • Hisashi Kasuya
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)

Abstract

We consider some Hodge theoretical properties (formality, hard-Lefschetz property, E 1-degeneration of Frölicher spectral sequence, \(\partial \bar{\partial }\)-Lemma and their twisted versions) on non-Kähler symplectic and complex manifolds. It is known that if nilmanifolds satisfy formality, hard-Lefschetz property, or \(\partial \bar{\partial }\)-Lemma, then they are only tori. Hodge theory on solvmanifolds are more complicated. We give non-Kähler solvmanifolds satisfying these properties.

Keywords

Line Bundle Holomorphic Line Bundle Compact Complex Manifold Cochain Complex Compact Homogeneous Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Angella, D., Kasuya, H.: Bott-Chern cohomology of solvmanifolds. arXiv:1212.5708 (2013)Google Scholar
  2. 2.
    Angella, D., Kasuya, H.: Cohomologies of deformations of solvmanifolds and closedness of some properties. arXiv:1305.6709 (2013)Google Scholar
  3. 3.
    Angella, D., Tomassini, A.: On the \(\partial \overline{\partial }\)-Lemma and Bott-Chern cohomology. Invent. Math. 192(1), 71–81 (2013)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Arapura, D., Nori, M.: Solvable fundamental groups of algebraic varieties and Kähler manifolds. Compositio Math. 116(2), 173–188 (1999)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Benson, C., Gordon, C.S.: K\(\ddot{\mathrm{a}}\) hler and symplectic structures on nilmanifolds. Topology 27(4), 513–518 (1988)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Console, S., Fino, A.: Dolbeault cohomology of compact nilmanifolds. Transform. Groups 6(2), 111–124 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Cordero, L.A., Fernández, M., Gray, A., Ugarte, L.: Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology. Trans. Am. Math. Soc. 352(12), 5405–5433 (2000)CrossRefMATHGoogle Scholar
  8. 8.
    Dekimpe, K.: Semi-simple splittings for solvable Lie groups and polynomial structures. Forum Math. 12(1), 77–96 (2000)MATHMathSciNetGoogle Scholar
  9. 9.
    Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: Real homotopy theory of Kahler manifolds. Invent. Math. 29(3), 245–274 (1975)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Dungey, N., ter Elst, A.F.M.: Robinson, D.W.: Analysis on Lie Groups with Polynomial Growth. Birkhäuser, Boston (2003)Google Scholar
  11. 11.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)MATHGoogle Scholar
  12. 12.
    Hasegawa, K.: Minimal models of nilmanifolds. Proc. Am. Math. Soc. 106(1), 65–71 (1989)CrossRefMATHGoogle Scholar
  13. 13.
    Hasegawa, K.: A note on compact solvmanifolds with Kähler structures. Osaka J. Math. 43(1), 131–135 (2006)MATHMathSciNetGoogle Scholar
  14. 14.
    Hasegawa, K.: Small deformations and non-left-invariant complex structures on six-dimensional compact solvmanifolds. Differ. Geom. Appl. 28(2), 220–227 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo Sect. I 8, 289–331 (1960)MATHMathSciNetGoogle Scholar
  16. 16.
    Kasuya, H.: Formality and hard Lefschetz properties of aspherical manifolds. Osaka J. Math. 50 (2), 439–455 (2013)MATHMathSciNetGoogle Scholar
  17. 17.
    Kasuya, H.: Minimal models, formality and hard Lefschetz properties of solvmanifolds with local systems. J. Differ. Geom. 93, 269–298 (2013)MATHMathSciNetGoogle Scholar
  18. 18.
    Kasuya, H.: Techniques of computations of Dolbeault cohomology of solvmanifolds. Math. Z. 273, 437–447 (2013)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Kasuya, H.: The Frolicher spectral sequences of certain solvmanifolds. J. Geom. Anal. (2013). doi: 10.1007/s12220-013-9429-2Google Scholar
  20. 20.
    Kasuya, H.: Hodge symmetry and decomposition on non-Kähler solvmanifolds. J. Geom. Phys. 76, 61–65 (2014)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Kasuya, H.: de Rham and Dolbeault cohomology of solvmanifolds with local systems. Math. Res. Lett. 4, (2014) (to appear)Google Scholar
  22. 22.
    Kasuya, H.: Flat bundles and hyper-hodge decomposition on solvmanifolds. arXiv:1309.4264 (2013)Google Scholar
  23. 23.
    Nakamura, I.: Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10, 85–112 (1975)MATHGoogle Scholar
  24. 24.
    Nomizu, K.: On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. Math. 59(2), 531–538 (1954)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Raghnathan, M.S.: Discrete Subgroups of Lie Groups. Springer, New York (1972)CrossRefGoogle Scholar
  26. 26.
    Rollenske, S.: Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds. J. Lond. Math. Soc. 79(2), 346–362 (2009)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Sakane, Y.: On compact complex parallelisable solvmanifolds. Osaka J. Math. 13(1), 187–212 (1976)MATHMathSciNetGoogle Scholar
  28. 28.
    Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)CrossRefMATHGoogle Scholar
  29. 29.
    Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1978)CrossRefGoogle Scholar
  30. 30.
    Yamada, T.: A pseudo-Kähler structure on a nontoral compact complex parallelizable solvmanifold. Geom. Dedicata 112, 115–122 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Institute of TechnologyMeguro, TokyoJapan

Personalised recommendations