Isometric Deformations of Surfaces with Singularities

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


This is a survey article on isometric deformations of surfaces with singularities. At the end of this paper, the author introduces a new problem on isometric deformations of cross cap singularities.


Fundamental Form Gaussian Curvature Principal Curvature Local Coordinate System Local Diffeomorphisms 


  1. 1.
    Fukui, T., Hasegawa, M.: Fronts of Whitney umbrella—a differential geometric approach via blowing up. J. Singul. 4, 35–67 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hasegawa, M., Honda, A., Naokawa, K., Saji, K., Umehara, M., Yamada, K.: Intrinsic properties of singularities of surfaces, preprint. arXiv:1409.0281Google Scholar
  3. 3.
    Hasegawa, M., Honda, A., Naokawa, K., Umehara, M., Yamada, K.: Intrinsic invariants of cross caps. Selecta Mathematica 20, 769–785 (2014)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Honda, A., Naokawa, K., Umehara, M., Yamada, K.: In: Direct correspondence at a meeting at March (2013)Google Scholar
  5. 5.
    Kossowski, M.: Realizing a singular first fundamental form as a nonimmersed surface in Euclidean 3-space. J. Geom. 81, 101–113 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Martins, L.F., Saji, K.: Geometric invariants of cuspidal edges, preprint (2013) Available from
  7. 7.
    Martins, L.F., Saji, K., Umehara, M., Yamada, K.: Behavior of Gaussian curvature around non-degenerate singular points on wave fronts, preprint, arXiv:1308.2136 (2013)Google Scholar
  8. 8.
    Naokawa, K., Umehara, M., Yamada, K.: Isometric deformations of cuspidal edges, preprint. arXiv:1408.4243Google Scholar
  9. 9.
    Saji, K., Umehara, M., Yamada,K.: The geometry of fronts. Ann. Math. 169, 491–529 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Shiba, S., Umehara, M.: The behavior of curvature functions at cusps and inflection points. Differ. Geom. Appl. 30, 285–299 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Spivak, M.: A comprehensive Introduction to Differential Geometry V. Pelish Inc., Houston (1999)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations