Isometric Deformations of Surfaces with Singularities

  • Masaaki Umehara
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 106)


This is a survey article on isometric deformations of surfaces with singularities. At the end of this paper, the author introduces a new problem on isometric deformations of cross cap singularities.


Fundamental Form Gaussian Curvature Principal Curvature Local Coordinate System Local Diffeomorphisms 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fukui, T., Hasegawa, M.: Fronts of Whitney umbrella—a differential geometric approach via blowing up. J. Singul. 4, 35–67 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Hasegawa, M., Honda, A., Naokawa, K., Saji, K., Umehara, M., Yamada, K.: Intrinsic properties of singularities of surfaces, preprint. arXiv:1409.0281Google Scholar
  3. 3.
    Hasegawa, M., Honda, A., Naokawa, K., Umehara, M., Yamada, K.: Intrinsic invariants of cross caps. Selecta Mathematica 20, 769–785 (2014)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Honda, A., Naokawa, K., Umehara, M., Yamada, K.: In: Direct correspondence at a meeting at March (2013)Google Scholar
  5. 5.
    Kossowski, M.: Realizing a singular first fundamental form as a nonimmersed surface in Euclidean 3-space. J. Geom. 81, 101–113 (2004)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Martins, L.F., Saji, K.: Geometric invariants of cuspidal edges, preprint (2013) Available from
  7. 7.
    Martins, L.F., Saji, K., Umehara, M., Yamada, K.: Behavior of Gaussian curvature around non-degenerate singular points on wave fronts, preprint, arXiv:1308.2136 (2013)Google Scholar
  8. 8.
    Naokawa, K., Umehara, M., Yamada, K.: Isometric deformations of cuspidal edges, preprint. arXiv:1408.4243Google Scholar
  9. 9.
    Saji, K., Umehara, M., Yamada,K.: The geometry of fronts. Ann. Math. 169, 491–529 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Shiba, S., Umehara, M.: The behavior of curvature functions at cusps and inflection points. Differ. Geom. Appl. 30, 285–299 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Spivak, M.: A comprehensive Introduction to Differential Geometry V. Pelish Inc., Houston (1999)Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Mathematical and Computing SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations