Skip to main content

Antizyme

  • Chapter
  • First Online:
Polyamines

Abstract

Antizyme (AZ) first emerged as an inhibitor of ornithine decarboxylase (ODC), a key enzyme in the polyamine biosynthesis. Expression of AZ rises in response to increasing cellular polyamine levels through the polyamine-induced translational frameshifting mechanism. Synthesized AZ proteins bind to an ODC monomer and trigger its degradation by the 26S proteasome in a ubiquitin-independent manner. To reduce the cellular polyamine level, AZ also inhibits the uptake of extracellular polyamine. Therefore, AZ provides the feedback regulation of cellular polyamines. In mammals, cells express three members of the AZ protein family: AZ1-3, AZ1, and AZ2, are distributed in most tissues whereas AZ3 is testis specific. AZ is regulated by protein antizyme inhibitors (AZINs) that are homologous to ODC but lack the enzymatic activity. Two isoforms of AZINs, AZIN1 and AZIN2, are known. This chapter reviews the function and regulation of AZs and AZINs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almrud JJ, Oliveira MA, Kern AD, Grishin NV, Phillips MA, Hackert ML (2000) Crystal structure of human ornithine decarboxylase at 2.1 Ã… resolution: structural insights to antizyme binding. J Mol Biol 295:7–16

    Article  CAS  PubMed  Google Scholar 

  • Bercovich Z, Snapir Z, Keren-Paz A, Kahana C (2011) Antizyme affects cell proliferation and viability solely through regulating cellular polyamines. J Biol Chem 286:33778–33783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bischoff JR, Plowman GD (1999) The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9:454–459

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, MacDonald A, Coffino P (2002) Structural elements of antizymes 1 and 2 are required for proteasomal degradation of ornithine decarboxylase. J Biol Chem 277:45957–45961

    Article  CAS  PubMed  Google Scholar 

  • Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Cheng X, Zhang C, Zhang Y, Li S, Wang C, Guadagno TM (2010) Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases. J Biol Chem 285:32988–32998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dulloo I, Gopalan G, Melino G, Sabapathy K (2010) The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc Natl Acad Sci USA 107:4902–4907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisk HA, Winey M (2001) The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106:95–104

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Murakami Y, Hayashi S (1982) A macromolecular inhibitor of the antizyme to ornithine decarboxylase. Biochem J 204:647–652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandre S, Bercovich Z, Kahana C (2002) Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. Eur J Biochem 269:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Geerts D, Koster J, Albert D, Koomoa DL, Feith DJ, Pegg AE, Volckmann R, Caron H, Versteeg R, Bachmann AS (2010) The polyamine metabolism genes ornithine decarboxylase and antizyme 2 predict aggressive behavior in neuroblastomas with and without MYCN amplification. Int J Cancer 126:2012–2024

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. Trends Biochem Sci 21:27–30

    Article  CAS  PubMed  Google Scholar 

  • Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6:931–941

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, Zhang M, Coffino P (2003) Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 278:12135–12143

    Article  CAS  PubMed  Google Scholar 

  • Ike A, Yamada S, Tanaka H, Nishimune Y, Nozaki M (2002) Structure and promoter activity of the gene encoding ornithine decarboxylase antizyme expressed exclusively in haploid germ cells in testis (OAZt/Oaz3). Gene (Amst) 298:183–193

    Article  CAS  Google Scholar 

  • Ivanov IP, Gesteland RF, Atkins JF (1998) A second mammalian antizyme: conservation of programmed ribosomal frameshifting. Genomics 52:119–129

    Article  CAS  PubMed  Google Scholar 

  • Ivanov IP, Gesteland RF, Atkins JF (2000a) Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Res 28:3185–3196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov IP, Rohrwasser A, Terreros D, Gesteland RF, Atkins JF (2000b) Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3. Proc Natl Acad Sci USA 97:4808–4813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajiwara K, Nagawawa H, Shimizu-Nishikawa K, Ookura T, Kimura M, Sugaya E (1996) Molecular characterization of seizure-related genes isolated by differential screening. Biochem Biophys Res Commun 21:9795–9799

    Google Scholar 

  • Kanerva K, Lappalainen J, Mäkitie LT, Virolainen S, Kovanen PT, Andersson LC (2009) Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS One 4:e6858

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanerva K, Mäkitie LT, Bäck N, Andersson LC (2010) Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking. Exp Cell Res 316:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Kasbek C, Yang CH, Fisk HA (2010) Antizyme restrains centrosome amplification by regulating the accumulation of Mps1 at centrosomes. Mol Biol Cell 21:3878–3889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keren-Paz A, Bercovich Z, Porat Z, Erez O, Brener O, Kahana C (2006) Overexpression of antizyme-inhibitor in NIH3T3 fibroblasts provides growth advantage through neutralization of antizyme functions. Oncogene 25:5163–5172

    CAS  PubMed  Google Scholar 

  • Kitani T, Fujisawa H (1989) Purification and characterization of antizyme inhibitor of ornithine decarboxylase from rat liver. Biochim Biophys Acta 991:44–49

    Article  CAS  PubMed  Google Scholar 

  • Kurian L, Palanimurugan R, Gödderz D, Dohmen RJ (2011) Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature (Lond) 477:490–494

    Article  CAS  Google Scholar 

  • Li X, Coffino P (1992) Regulated degradation of ornithine decarboxylase requires interaction with the polyamine-inducible protein antizyme. Mol Cell Biol 12:3556–3562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Coffino P (1994) Distinct domains of antizyme required for binding and proteolysis of ornithine decarboxylase. Mol Cell Biol 14:87–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim SK, Gopalan G (2007) Antizyme 1 mediates AURKAIP1-dependent degradation of Aurora-A. Oncogene 26:6593–6603

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Martin J, Gruendler C, Farley J, Meng X, Li BY, Lechleider R, Huff C, Kim RH, Grasser WA, Paralkar V, Wang T (2002) A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 3:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Littlepage LE, Ruderman JV (2002) Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev 16:2274–2285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • López-Contreras AJ, Ramos-Molina B, Cremades A, Peñafiel R (2008) Antizyme inhibitor 2 (AZIN2/ODCp) stimulates polyamine uptake in mammalian cells. J Biol Chem 283:20761–20769

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Contreras AJ, Sánchez-Laorden BL, Ramos-Molina B, de la Morena ME, Cremades A, Peñafiel R (2009) Subcellular localization of antizyme inhibitor 2 in mammalian cells: influence of intrinsic sequences and interaction with antizymes. J Cell Biochem 107:732–740

    Article  PubMed  Google Scholar 

  • Mangold U, Hayakawa H, Coughlin M, Münger K, Zetter BR (2008) Antizyme, a mediator of ubiquitin-independent proteasomal degradation and its inhibitor localize to centrosomes and modulate centriole amplification. Oncogene 27:604–613

    Article  CAS  PubMed  Google Scholar 

  • Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80:1360–1370

    Article  Google Scholar 

  • Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J 299:19–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murai N, Shimizu A, Murakami Y, Matsufuji S (2009) Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem 108:1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature (Lond) 360:597–599

    Article  CAS  Google Scholar 

  • Murakami Y, Ichiba T, Matsufuji S, Hayashi S (1996) Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J Biol Chem 271:3340–3342

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Matsufuji S, Hayashi S, Tanahashi N, Tanaka K (1999) ATP-dependent inactivation and sequestration of ornithine decarboxylase by the 26S proteasome are prerequisites for degradation. Mol Cell Biol 19:7216–7227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami Y, Suzuki J, Samejima K, Kikuchi K, Hascilowicz T, Murai N, Matsufuji S, Oka T (2009) The change of antizyme inhibitor expression and its possible role during mammalian cell cycle. Exp Cell Res 315:2301–2311

    Article  CAS  PubMed  Google Scholar 

  • Newman RM, Mobascher A, Mangold U, Koike C, Diah S, Schmidt M, Finley D, Zetter BR (2004) Antizyme targets cyclin D1 for degradation. A novel mechanism for cell growth repression. J Biol Chem 279:41504–41511

    Article  CAS  PubMed  Google Scholar 

  • Olsen RR, Zetter BR (2011) Evidence of a role for antizyme and antizyme inhibitor as regulators of human cancer. Mol Cancer Res 9:1285–1293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petros LM, Howard MT, Gesteland RF, Atkins JF (2005) Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 338:1478–1489

    Article  CAS  PubMed  Google Scholar 

  • Pitkänen LT, Heiskala M, Andersson LC (2001) Expression of a novel human ornithine decarboxylase-like protein in the central nervous system and testes. Biochem Biophys Res Commun 287:1051–1057

    Article  PubMed  Google Scholar 

  • Ruan Y, Cheng M, Ou Y, Oko R, van der Hoorn FA (2011) Ornithine decarboxylase antizyme Oaz3 modulates protein phosphatase activity. J Biol Chem 286:29417–29427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2009) Antizyme 3 inhibits polyamine uptake and ornithine decarboxylase (ODC) activity, but does not stimulate ODC degradation. Biochem J 419:99–103

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Antizyme protects against abnormal accumulation and toxicity of polyamines in ornithine decarboxylase-overproducing cells. Proc Natl Acad Sci USA 91:8930–8934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taguchi SI, Honda K, Sugiura K, Yamaguchi A, Furukawa K, Urano T (2002) Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett 519:59–65

    Article  CAS  PubMed  Google Scholar 

  • Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, Hirose M, Wada M, Fujita K, Ogawa Y, Okabe M, Nishimune Y, Tanaka H (2009) OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 5:e1000712

    Article  PubMed Central  PubMed  Google Scholar 

  • Tosaka M, Okajima F, Hashiba Y, Saito N, Nagano T, Watanabe T, Kimura T, Sasaki T (2000) Identification and characterization of testis specific ornithine decarboxylase antizyme (OAZ-t) gene: expression in haploid germ cells and polyamine-induced frameshifting. Genes Cells 5:265–276

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B (2005) Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett 579:559–566

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Murai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Murai, N. (2015). Antizyme. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_7

Download citation

Publish with us

Policies and ethics