Skip to main content

Polyamine Catabolism in Prokaryotes

  • Chapter
  • First Online:

Abstract

Polyamines play important roles in cell growth and proliferation. In particular, these biogenic compounds are involved in the regulation of transcription and translation processes required for bacterial proliferation. Consequently, intracellular polyamine content is strictly regulated at several levels, including biosynthesis, degradation, and uptake from and excretion into the environment. In this chapter, we discuss polyamine catabolism in prokaryotes, focusing on the well-studied polyamine catabolism pathway in Escherichia coli. E. coli catabolizes putrescine to succinate via γ-aminobutyraldehyde (GABA) through the aminotransferase pathway or the γ-glutamylate pathway (the Puu pathway). Excess spermidine is acetylated to yield acetylspermidine, but whether this metabolite is then excreted from cells, as it is in eukaryotes, is not clear. Pseudomonas aeruginosa POA1, in contrast to E. coli, has expanded catabolic pathways to salvage cadaverine and spermidine as carbon and nitrogen sources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bollinger JM Jr, Kwon DS, Huisman GW, Kolter R, Walsh CT (1995) Glutathionylspermidine metabolism in Escherichia coli. Purification, cloning, overproduction, and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J Biol Chem 270:14031–14041

    Article  CAS  PubMed  Google Scholar 

  • Bowman WH, Tabor CW, Tabor H (1973) Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem 248:2480–2486

    CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2009) Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191:5549–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiang BY, Chen TC, Pai CH, Chou CC, Chen HH, Ko TP, Hsu WH, Chang CY, Wu WF, Wang AH, Lin CH (2010) Protein S-thiolation by glutathionylspermidine (Gsp): the role of Escherichia coli Gsp synthetase/amidase in redox regulation. J Biol Chem 285:25345–25353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chou HT, Li JY, Peng YC, Lu CD (2013) Molecular characterization of PauR and its role in control of putrescine and cadaverine catabolism through the γ-glutamylation pathway in Pseudomonas aeruginosa PAO1. J Bacteriol 195:3906–3913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dasu VV, Nakada Y, Ohnishi-Kameyama M, Kimura K, Itoh Y (2006) Characterization and a role of Pseudomonas aeruginosa spermidine dehydrogenase in polyamine catabolism. Microbiology 152(pt 8):2265–2272

    Article  CAS  PubMed  Google Scholar 

  • de Azevedo Wasch SI, van der Ploeg JR, Maire T, Lebreton A, Kiener A, Leisinger T (2002) Transformation of isopropylamine to l-alaninol by Pseudomonas sp. strain KIE171 involves N-glutamylated intermediates. Appl Environ Microbiol 68:2368–2375

    Article  PubMed Central  PubMed  Google Scholar 

  • Donnelly MI, Cooper RA (1981) Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and γ-aminobutyrate. Eur J Biochem 113:555–561

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer T, Chen L, Sauer U, Vitkup D (2007) Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J Bacteriol 189:8073–8078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuchi J, Kashiwagi K, Takio K, Igarashi K (1994) Properties and structure of spermidine acetyltransferase in Escherichia coli. J Biol Chem 269:22581–22585

    CAS  PubMed  Google Scholar 

  • Fukuchi J, Kashiwagi K, Yamagishi M, Ishihama A, Igarashi K (1995) Decrease in cell viability due to the accumulation of spermidine in spermidine acetyltransferase-deficient mutant of Escherichia coli. J Biol Chem 270:18831–18835

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  CAS  PubMed  Google Scholar 

  • Gruez A, Roig-Zamboni V, Grisel S, Salomoni A, Valencia C, Campanacci V, Tegoni M, Cambillau C (2004) Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase. J Mol Biol 343:29–41

    Article  CAS  PubMed  Google Scholar 

  • Hanfery CC, Pearson BM, Hazeldine S, Lee J, Gaskin DJ, Woster PM, Phillips MA, Michael AJ (2011) Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J Biol Chem 286:43301–43312

    Article  Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Google Scholar 

  • Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344(pt 3):633–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K, Hamasaki H, Miura A, Kakegawa T, Hirose S, Matsuzaki S (1986) Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J Bacteriol 166:128–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280:4602–4608

    Article  CAS  PubMed  Google Scholar 

  • Kurihara S, Oda S, Kumagai H, Suzuki H (2006) γ-Glutamyl-γ-aminobutyrate hydrolase in the putrescine utilization pathway of Escherichia coli K-12. FEMS Microbiol Lett 256:318–323

    Article  CAS  PubMed  Google Scholar 

  • Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H (2008) γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 283:19981–19990

    Article  CAS  PubMed  Google Scholar 

  • Kurihara S, Tsuboi Y, Oda S, Kim HG, Kumagai H, Suzuki H (2009) The putrescine importer PuuP of Escherichia coli K-12. J Bacteriol 191:2776–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurihara S, Kato K, Asada K, Kumagai H, Suzuki H (2010) A putrescine-inducible pathway comprising PuuE-YneI in which γ-aminobutyrate is degraded into succinate in Escherichia coli K-12. J Bacteriol 192:4582–4591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon DS, Lin CH, Chen S, Coward JK, Walsh CT, Bollinger JM Jr (1997) Dissection of glutathionylspermidine synthetase/amidase from Escherichia coli into autonomously folding and functional synthetase and amidase domains. J Biol Chem 272:2429–2436

    Article  CAS  PubMed  Google Scholar 

  • Liaw SH, Villafranca JJ, Eisenberg D (1993) A model for oxidative modification of glutamine synthetase, based on crystal structures of mutant H269N and the oxidized enzyme. Biochemistry 32:7999–8003

    Article  CAS  PubMed  Google Scholar 

  • Lu CD, Itoh Y, Nakada Y, Jiang Y (2002) Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 184:3765–3773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maciag A, Peano C, Pietrelli A, Egli T, De Bellis G, Landini P (2011) In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements. Nucleic Acids Res 39:5338–5355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metzner M, Germer J, Hengge R (2004) Multiple stress signal integration in the regulation of the complex σS-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol 51:799–811

    Article  CAS  PubMed  Google Scholar 

  • Muse WB, Bender RA (1998) The nac (nitrogen assimilation control) gene from Escherichia coli. J Bacteriol 180:1166–1173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakada Y, Jiang Y, Nishijyo T, Itoh Y, Lu CD (2001) Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 183:6517–6524

    Google Scholar 

  • Nemoto N, Kurihara S, Kitahara Y, Asada K, Kato K, Suzuki H (2012) Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12. J Bacteriol 194:3437–3447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pai CH, Chiang BY, Ko TP, Chou CC, Chong CM, Yen FJ, Chen S, Coward JK, Wang AH, Lin CH (2006) Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase. EMBO J 25:5970–5982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem (Tokyo) 139:161–169

    Article  CAS  Google Scholar 

  • Partridge JD, Scott C, Tang Y, Poole RK, Green J (2006) Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281:27806–27815

    Article  CAS  PubMed  Google Scholar 

  • Prieto MI, Martin J, Balana-Fouce R, Garrido-Pertierra A (1987) Properties of γ-aminobutyraldehyde dehydrogenase from Escherichia coli. Biochimie 69:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Reitzer L, Schneider BL (2001) Metabolic context and possible physiological themes of σ54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR (2003) Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol 3:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Samsonova NN, Smirnov SV, Novikova AE, Ptitsyn LR (2005) Identification of Escherichia coli K12 YdcW protein as a γ-aminobutyraldehyde dehydrogenase. FEBS Lett 579:4107–4112

    Article  CAS  PubMed  Google Scholar 

  • Schneider BL, Reitzer L (2012) Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J Bacteriol 194:4080–4088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider BL, Ruback S, Kiupakis AK, Kasbarian H, Pybus C, Reitzer L (2002) The Escherichia coli gabDTPC operon: specific γ-aminobutyrate catabolism and nonspecific induction. J Bacteriol 184:6976–6986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider BL, Hernandez VJ, Reitzer L (2013) Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol Microbiol 88:537–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaibe E, Metzer E, Halpern YS (1985a) Metabolic pathway for the utilization of l-arginine, l-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:933–937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaibe E, Metzer E, Halpern YS (1985b) Control of utilization of l-arginine, l-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:938–942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimada T, Fujita N, Yamamoto K, Ishihama A (2011) Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 6:e20081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stadtman ER, Ginsburg A (1974) The glutamine synthetase of Escherichia coli: structure and control. In: Boyer PD (ed) The enzymes, vol 10. Academic Press, New York, pp 755–807

    Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terui Y, Saroj SD, Sakamoto A, Yoshida T, Higashi K, Kurihara S, Suzuki H, Toida T, Kashiwagi K, Igarashi K (2014) Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance in Escherichia coli. Amino Acids 46:661–670

    Google Scholar 

  • Yao X, He W, Lu CD (2011) Functional characterization of seven γ-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 193:3923–3930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Liu M, Burgess RR (2010) Promoter and regulon analysis of nitrogen assimilation factor, σ54, reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Res 38:1273–1283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S (2000) Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci USA 97(26):14674–14679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, H., Kurihara, S. (2015). Polyamine Catabolism in Prokaryotes. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_4

Download citation

Publish with us

Policies and ethics