Skip to main content

Polyamines and Longevity in Mammals

  • Chapter
  • First Online:
Polyamines

Abstract

Polyamines are universally present in all cells of every species. Polyamines have several biological functions, such as in the synthesis and stabilization of DNA, RNA, and proteins; in cell proliferation; and in the maturation and maintenance of intestinal mucosal barriers. They also show antiinflammatory and antimutagenic activities and protect against diverse stresses and autophagy. In mammals, body polyamine levels decrease during the aging process. Polyamines have therefore been found to be useful for the inhibition of chronic inflammation, which is one of the main symptoms of geriatric diseases. In fact, oral polyamine supplementation increases lifespan in various model organisms such as yeast, fly, and worm. Although research on the promotion of longevity using polyamines has just begun in mammals, several effective results have already been obtained. Interestingly, the longevity observed in mice given exogenous polyamines is not the same mechanism of longevity obtained by calorie restriction, which has been shown to increase longevity in a variety of species. In addition, because exogenous polyamines derived from meals are absorbed before they reach the lower parts of the intestine, the greatest amounts of the polyamines in the lower parts of the intestine are synthesized by intestinal microbiota. In this chapter, we provide an overview of the effects of exogenous polyamines, which are supplied by food or by intestinal microbiota altered using probiotics, on longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bachrach U (2005) Naturally occurring polyamines: interaction with macromolecules. Curr Protein Pept Sci 6(6):559–566

    Article  CAS  PubMed  Google Scholar 

  • Bjelaković G, Stojanović I, Jevtović Stoimenov T, Pavlović D, Kocić G, Rossi S, Tabolacci C, Nikolić J, Sokolović D, Bjelakovic L (2010) Metabolic correlations of glucocorticoids and polyamines in inflammation and apoptosis. Amino Acids 39(1):29–43

    Article  PubMed  Google Scholar 

  • Brüünsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin N Am 23(1):15–39

    Article  Google Scholar 

  • Buts JP, De Keyser N, Romain N, Dandrifosse G, Sokal E, Nsengiyumva T (1994) Response of rat immature enterocytes to insulin: regulation by receptor binding and endoluminal polyamine uptake. Gastroenterology 106(1):49–59

    CAS  PubMed  Google Scholar 

  • Choi YH, Park HY (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J Biomed Sci 19:31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8(1):18–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cipolla BG, Havouism R, Moulinoux JP (2007) Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids 33:203–212

    Article  CAS  PubMed  Google Scholar 

  • Das R, Kanungo MS (1982) Activity and modulation of ornithine decarboxylase and concentrations of polyamines in various tissues of rats as a function of age. Exp Gerontol 17(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105

    Article  CAS  PubMed  Google Scholar 

  • Gerner EW (2007) Impact of dietary amino acids and polyamines on intestinal carcinogenesis and chemoprevention in mouse models. Biochem Soc Trans 35(pt 2):322–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, Wang JY (2003) Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol 285(5):C1174–C1187

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Rao JN, Liu L, Zou T, Keledjian KM, Boneva D, Marasa BS, Wang JY (2005) Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 288(6):G1159–G1169

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2011) Characterization of genes for polyamine modulon. Methods Mol Biol 720:51–65

    Article  CAS  PubMed  Google Scholar 

  • Löser C (2000) Polyamines in human and animal milk. Br J Nutr 84 (Suppl 1): S55–S58

    PubMed  Google Scholar 

  • Lux GD, Marton LJ, Baylin SB (1980) Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in rats. Science 210(4466):195–198

    Article  CAS  PubMed  Google Scholar 

  • Ma TY, Hollander D, Dadufalza V, Krugliak P (1992) Effect of aging and caloric restriction on intestinal permeability. Exp Gerontol 27(3):321–333

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Benno Y (2004) Consumption of Bifidobacterium lactis LKM512 yogurt reduces gut mutagenicity by increasing gut polyamine contents in healthy adult subjects. Mutat Res 568:147–153

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Benno Y (2007) The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol Immunol 51(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Kurihara S (2011) Probiotics-induced increase of large intestinal luminal polyamine concentration may promote longevity. Med Hypotheses 77(4):469–472

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Ohishi H, Benno Y (2001) Impact of LKM512 yogurt on improvement of intestinal environment of the elderly. FEMS Immunol Med Microbiol 31(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y (2011) Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One 6(8):e23652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2:233

    PubMed Central  PubMed  Google Scholar 

  • Nishimura K, Shiina R, Kashiwagi K, Igarashi K (2006) Decrease in polyamines with aging and their ingestion from food and drink. J Biochem (Tokyo) 139(1):81–90

    Article  CAS  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38(2):491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pillai SP, Shankel DM (1997) Polyamines and their potential to be antimutagens. Mutat Res 377(2):217–224

    Article  CAS  PubMed  Google Scholar 

  • Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V (2012) Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res 15(6):590–595

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature (Lond) 464:59–65

    Article  CAS  Google Scholar 

  • Rhee HJ, Kim EJ, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11(4):685–703

    Article  CAS  PubMed  Google Scholar 

  • Russell DH, Levy CC (1971) Polyamine accumulation and biosynthesis in a mouse L1210 leukemia. Cancer Res 31(3):248–251

    CAS  PubMed  Google Scholar 

  • Sarhan S, Knodgen B, Seiler N (1992) Polyamine deprivation, malnutrition and tumor growth. Anticancer Res 12(2):457–466

    CAS  PubMed  Google Scholar 

  • Scuoppo C, Miething C, Lindqvist L, Reyes J, Ruse C, Appelmann I, Yoon S, Krasnitz A, Teruya-Feldstein J, Pappin D, Pelletier J, Lowe SW (2012) A tumour suppressor network relying on the polyamine-hypusine axis. Nature (Lond) 487(7406):244–248

    Article  CAS  Google Scholar 

  • Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9(3):623–642

    Article  CAS  PubMed  Google Scholar 

  • Soda K, Kano Y, Nakamura T, Kasono K, Kawakami M, Konishi F (2005) Spermine, a natural polyamine, suppresses LFA-1 expression on human lymphocytes. J Immunol 175(1):237–245

    Article  CAS  PubMed  Google Scholar 

  • Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009a) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44(11):727–732

    Article  CAS  PubMed  Google Scholar 

  • Soda K, Kano Y, Sakuragi M, Takao K, Lefor A, Konishi F (2009b) Long-term oral polyamine intake increases blood polyamine concentrations. J Nutr Sci Vitaminol (Tokyo) 55(4):361–366

    Article  CAS  Google Scholar 

  • Soda K, Kano Y, Chiba F, Koizumi K, Miyaki Y (2013) Increased polyamine intake inhibits age-associated alteration in global DNA methylation and 1,2-dimethylhydrazine-induced tumorigenesis. PLoS One 8(5):e64357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steegenga WT, de Wit NJ, Boekschoten MV, Ijssennagger N, Lute C, Keshtkar S, Grootte Bromhaar MM, Kampman E, de Groot LC, Muller M (2012) Structural, functional and molecular analysis of the effects of aging in the small intestine and colon of C57BL/6J mice. BMC Med Genomics 5(1):38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790

    Article  CAS  PubMed  Google Scholar 

  • Thompson PA, Wertheim BC, Zell JA, Chen WP, McLaren CE, LaFleur BJ, Meyskens FL, Gerner EW (2010) Levels of rectal mucosal polyamines and prostaglandin E2 predict ability of DFMO and sulindac to prevent colorectal adenoma. Gastroenterology 139(3):797–805, 805 e791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tosato M, Zamboni V, Ferrini A, Cesari M (2007) The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2(3):401–412

    PubMed Central  PubMed  Google Scholar 

  • Uda K, Tsujikawa T, Fujiyama Y, Bamba T (2003) Rapid absorption of luminal polyamines in a rat small intestine ex vivo model. J Gastroenterol Hepatol 18(5):554–559

    Article  CAS  PubMed  Google Scholar 

  • Walford RL, Harris SB, Weindruch R (1987) Dietary restriction and aging: historical phases, mechanisms and current directions. J Nutr 117(10):1650–1654

    CAS  PubMed  Google Scholar 

  • Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey K (1997) Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 185:1759–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Borovikova LV, Wang H, Metz C, Tracey KJ (1999) Spermine inhibition of monocyte activation and inflammation. Mol Med 5(9):595–605

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuharu Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matsumoto, M. (2015). Polyamines and Longevity in Mammals. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_21

Download citation

Publish with us

Policies and ethics