Skip to main content

Biosynthesis of Polyamines in Eukaryotes, Archaea, and Bacteria

  • Chapter
  • First Online:
Book cover Polyamines

Abstract

As with all metabolic pathways, not only has polyamine biosynthesis been subject to divergent and convergent evolution and horizontal gene transfer, but many pathogenic and commensal organisms have abandoned the task altogether and instead obtain polyamines from the environment. Reflecting primary metabolism in general, polyamine biosynthesis is more diverse in Bacteria than it is in eukaryotes and Archaea. Each of the three physiologically relevant triamines, that is, spermidine, sym-homospermidine, and sym-norspermidine, can be synthesized by at least two distinct, evolutionarily independent pathways. Synthesis of tetraamines has evolved independently in Bacteria, Archaea, plants, yeasts, and animals. Because of the relative ease of genomic sequencing and the ever-increasing number of complete genome sequences available, it will now be easier to determine which polyamines are likely to be present in an organism by using genomic rather than chemical analysis. The following chapter is a guide to the biosynthetic diversity of polyamine formation and the evolutionary mechanisms generating that diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn HJ, Kim KH, Lee J, Ha JY, Lee HH, Kim D et al (2004) Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily. J Biol Chem 279:50505–50513

    Article  CAS  PubMed  Google Scholar 

  • Albers E (2009) Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′-methylthioadenosine. IUBMB Life 61:1132–1142

    Article  CAS  PubMed  Google Scholar 

  • Andersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177, discussion 77–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann S, Sander A, Gurnon JR, Yanai-Balser GM, Van Etten JL, Piotrowski M (2007) Chlorella viruses contain genes encoding a complete polyamine biosynthetic pathway. Virology 360:209–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 285:39224–39238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burrell M, Hanfrey CC, Kinch LN, Elliott KA, Michael AJ (2012) Evolution of a novel lysine decarboxylase in siderophore biosynthesis. Mol Microbiol 86:485–499

    Article  CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V et al (2007) The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 189:6057–6067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2009) Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. J Bacteriol 191:5549–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chawla B, Jhingran A, Singh S, Tyagi N, Park MH, Srinivasan N et al (2010) Identification and characterization of a novel deoxyhypusine synthase in Leishmania donovani. J Biol Chem 285:453–463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng X, Lee J, Michael AJ, Tomchick DR, Goldsmith EJ, Phillips MA (2010) Evolution of substrate specificity within a diverse family of beta/alpha-barrel-fold basic amino acid decarboxylases: X-ray structure determination of enzymes with specificity for l-arginine and carboxynorspermidine. J Biol Chem 285:25708–25719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520

    Article  CAS  PubMed  Google Scholar 

  • Giles TN, Graham DE (2008) Crenarchaeal arginine decarboxylase evolved from an S-adenosylmethionine decarboxylase enzyme. J Biol Chem 283:25829–25838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goda S, Sakuraba H, Kawarabayasi Y, Ohshima T (2005) The first archaeal agmatinase from anaerobic hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization. Biochim Biophys Acta 1748:110–115

    Article  CAS  PubMed  Google Scholar 

  • Graham DE, Xu H, White RH (2002) Methanococcus jannaschii uses a pyruvoyl-dependent arginine decarboxylase in polyamine biosynthesis. J Biol Chem 277:23500–23507

    Article  CAS  PubMed  Google Scholar 

  • Green R, Hanfrey CC, Elliott KA, McCloskey DE, Wang X, Kanugula S et al (2011) Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation. Mol Microbiol 81:1109–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR et al (2013) eIF5A promotes translation of polyproline motifs. Mol Cell 51:35–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamana K, Matsuzaki S (1992) Polyamines as a chemotaxonomic marker in bacterial systematics. Crit Rev Microbiol 18:261–283

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey C, Elliott KA, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2005) A dual upstream open reading frame-based autoregulatory circuit controlling polyamine-responsive translation. J Biol Chem 280:39229–39237

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey CC, Pearson BM, Hazeldine S, Lee J, Gaskin DJ, Woster PM et al (2011) Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J Biol Chem 286:43301–43312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M et al (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Illingworth C, Mayer MJ, Elliott K, Hanfrey C, Walton NJ, Michael AJ (2003) The diverse bacterial origins of the Arabidopsis polyamine biosynthetic pathway. FEBS Lett 549:26–30

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Akiyama T, Kato T, Sato S, Tabata S, Yamamoto KT et al (2004) Spermine is not essential for survival of Arabidopsis. FEBS Lett 556:148–152

    Article  CAS  PubMed  Google Scholar 

  • Ivanov IP, Atkins JF, Michael AJ (2010) A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 38:353–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G et al (2011) Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J 30:931–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim AD, Graham DE, Seeholzer SH, Markham GD (2000) S-Adenosylmethionine decarboxylase from the archaeon Methanococcus jannaschii: identification of a novel family of pyruvoyl enzymes. J Bacteriol 182:6667–6672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knott JM, Romer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS Lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Landau G, Bercovich Z, Park MH, Kahana C (2010) The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J Biol Chem 285:12474–12481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA (2007) Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem 282:27115–27125

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA et al (2009) An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284:9899–9907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller D, Xu H, White RH (2012) A new subfamily of agmatinases present in methanogenic Archaea is Fe(II) dependent. Biochemistry 51:3067–3078

    Article  CAS  PubMed  Google Scholar 

  • Morimoto N, Fukuda W, Nakajima N, Masuda T, Terui Y, Kanai T et al (2010) Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 192:4991–5001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller S, Da'dara A, Luersen K, Wrenger C, Das Gupta R, Madhubala R et al (2000) In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase. J Biol Chem 275:8097–8102

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Ichiba T, Matsufuji S, Hayashi S (1996) Cloning of antizyme inhibitor, a highly homologous protein to ornithine decarboxylase. J Biol Chem 271:3340–3342

    Article  CAS  PubMed  Google Scholar 

  • Nakada Y, Itoh Y (2003) Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology 149:707–714

    Article  CAS  PubMed  Google Scholar 

  • Nguyen S, Jones DC, Wyllie S, Fairlamb AH, Phillips MA (2013) Allosteric activation of trypanosomatid deoxyhypusine synthase by a catalytically dead paralog. J Biol Chem 288:15256–15267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura K, Lee SB, Park JH, Park MH (2012) Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids 42:703–710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohnuma M, Ganbe T, Terui Y, Niitsu M, Sato T, Tanaka N et al (2011) Crystal structures and enzymatic properties of a triamine/agmatine aminopropyltransferase from Thermus thermophilus. J Mol Biol 408:971–986

    Article  CAS  PubMed  Google Scholar 

  • Okujo N, Sakakibara Y, Yoshida T, Yamamoto S (1994) Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticus. Biometals 7:170–176

    CAS  PubMed  Google Scholar 

  • Park MH, Joe YA, Kang KR (1998) Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. J Biol Chem 273:1677–1683

    Article  CAS  PubMed  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38:491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188:2355–2363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE (2009) S-Adenosylmethionine decarboxylase. Essays Biochem 46:25–45

    Article  CAS  PubMed  Google Scholar 

  • Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raney A, Law GL, Mize GJ, Morris DR (2002) Regulated translation termination at the upstream open reading frame in S-adenosylmethionine decarboxylase mRNA. J Biol Chem 277:5988–5994

    Article  CAS  PubMed  Google Scholar 

  • Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ et al (2011) The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-beta-lysine. Nat Chem Biol 7:667–669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw FL, Elliott KA, Kinch LN, Fuell C, Phillips MA, Michael AJ (2010) Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine. J Biol Chem 285:14711–14723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skiebe E, de Berardinis V, Morczinek P, Kerrinnes T, Faber F, Lepka D et al (2012) Surface-associated motility, a common trait of clinical isolates of Acinetobacter baumannii, depends on 1,3-diaminopropane. Int J Med Microbiol 302:117–128

    Article  CAS  PubMed  Google Scholar 

  • Steglich C, Schaeffer SW (2006) The ornithine decarboxylase gene of Trypanosoma brucei: evidence for horizontal gene transfer from a vertebrate source. Infect Genet Evol 6:205–219

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Ober D, Martin W, Kellermann J, Hartmann T (1996) Purification, molecular cloning and expression in Escherichia coli of homospermidine synthase from Rhodopseudomonas viridis. Eur J Biochem 240:373–379

    Article  CAS  PubMed  Google Scholar 

  • Toms AV, Kinsland C, McCloskey DE, Pegg AE, Ealick SE (2004) Evolutionary links as revealed by the structure of Thermotoga maritima S-adenosylmethionine decarboxylase. J Biol Chem 279:33837–33846

    Article  CAS  PubMed  Google Scholar 

  • Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K (2013) Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339:82–85

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P et al (2007) Structure and mechanism of spermidine synthases. Biochemistry 46:8331–8339

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P et al (2008) Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem 283:16135–16146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ et al (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa T, Sumida T, Ishii R, Takemoto C, Yokoyama S (2010) A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat Struct Mol Biol 17:1136–1143

    Article  CAS  PubMed  Google Scholar 

  • Yarlett N, Martinez MP, Goldberg B, Kramer DL, Porter CW (2000) Dependence of Trichomonas vaginalis upon polyamine backconversion. Microbiology 146(Pt 10):2715–2722

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Michael, A.J. (2015). Biosynthesis of Polyamines in Eukaryotes, Archaea, and Bacteria. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_1

Download citation

Publish with us

Policies and ethics