Skip to main content

Photoelectron Yield Spectroscopy for Organic Materials and Interfaces

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

Abstract

Photoelectron yield spectroscopy (PYS), in which total photoelectron yield is recorded as a function of incident photon energy, has been widely applied to determine the ionization energy of various organic electronic materials. PYS has some advantage complimentary to conventional photoelectron spectroscopy; (i) measurement environment is not limited to vacuum, (ii) sample charge-up problem is practically negligible, (iii) high sensitivity is available in vacuum, and so on. Thus, PYS is a powerful method to explore the electronic structures of organic materials and interfaces in practical situation. In this chapter, first we describe the basic principle and experimental setup of PYS. Then the applications to various organic materials and interfaces are described with the results of combined application of PYS and high sensitivity photoemission spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y.F. Liew, H. Aziz, N.X. Hu, H.S. Chan, G. Xu, Z. Popovic, Appl. Phys. Lett. 77, 2650 (2000)

    Article  ADS  Google Scholar 

  2. D. Xu, C. Adachi, Appl. Phys. Lett. 95, 053304 (2009)

    Article  ADS  Google Scholar 

  3. M. Faubel, in Photoelectron Spectroscopy at Liquid Surfaces Chap. 12, ed. by C-Y. Ng. Photoionization and Photodetachment (World Scientific, Singapore, 1999)

    Google Scholar 

  4. M.P. Seah, in Practical Surface Analysis, 2nd edn., vol. 1, ed. by D. Briggs, M.P. Seah (Wiley, New York, 1990), Appendix 2

    Google Scholar 

  5. J. Cazaux, J. Electron Spectros. Relat. Phenomena. 105, 155 (1999)

    Article  Google Scholar 

  6. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford Science, New York, 1999). Chap. IV

    Google Scholar 

  7. C.N. Bergulund, W.E. Spicer, Phys. Rev. 136, A 1030 (1964)

    Article  ADS  Google Scholar 

  8. R.H. Fowler, Phys. Rev. 38, 45 (1931)

    Article  ADS  Google Scholar 

  9. C.R. Crowell, T.W. Kao, C.L. Anderson, V.L. Rideout, Surf. Sci. 32, 591 (1972)

    Article  ADS  Google Scholar 

  10. E.O. Kane, Phys. Rev. 127, 131 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. M. Kochi, Y. Harada, T. Hirooka, H. Inokuchi, Bull. Chem. Soc. Jpn. 43, 2690 (1970)

    Article  Google Scholar 

  12. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972)

    Book  Google Scholar 

  13. C.A. Sebenne, II Nuvo Cimento 39, 768 (1977)

    Article  ADS  Google Scholar 

  14. R.P. Winch, Phys. Rev. 37, 1263 (1931); Mendenhall, Science 73, 107 (1931)

    Google Scholar 

  15. G.W. Gobeli, F.G. Allen, Phys. Rev. 127, 141 (1962)

    Article  ADS  Google Scholar 

  16. K. Winter, L. Ley, Phys. Rev. B36, 6072 (1987)

    Article  ADS  Google Scholar 

  17. M. Sebastiani, L. Di Gapare, G. Capellini, C. Bittencourt, F. Evangelisti, Phys. Rev. Lett. 75, 3352 (1995)

    Article  ADS  Google Scholar 

  18. S. Miyazaki, T. Maruyama, A. Kono, M. Hirose, Microelectron Eng 48, 63 (1999)

    Article  Google Scholar 

  19. H. Kirihata, M. Uda, Rev. Sci. Instrum. 52, 68 (1981)

    Article  ADS  Google Scholar 

  20. T. Smith, J. Appl. Phys. 46, 1553 (1975)

    Article  ADS  Google Scholar 

  21. K. Inumaru, Y. Okubo, S. Yamanaka, Chem. Lett. 8, 741 (1999)

    Article  Google Scholar 

  22. S. Grigalevicius, G. Blazys, J. Ostrauskaite, J.V. Grazulevicius, V. Gaidelis, V. Jakauskas, E. Montrimas, Synth. Met. 128, 127 (2002)

    Article  Google Scholar 

  23. Y. Nakayama, S. Machida, D. Tsunami, Y. Kimura, M. Niwano, Y. Noguchi, H. Ishii, Appl. Phys. Lett. 92, 153306-1 (2008)

    Article  ADS  Google Scholar 

  24. S. Machida, Y. Ozawa, J. Takahashi, H. Tokairin, Y. Nakayama, H. Ishii, Appl. Phys. Express 6, 025801 (2013)

    Article  ADS  Google Scholar 

  25. Y. Nakayama, S. Machida, T. Minari, K. Tsukagoshi, Y. Noguchi, H. Ishii, Appl. Phys. Lett. 93, 173305 (2008)

    Article  ADS  Google Scholar 

  26. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007)

    Article  ADS  Google Scholar 

  27. Y. Harada, T. Takahashi, S. Fujisawa, T. Kajiwara, Chem. Phys. Lett. 62, 283 (1979)

    Article  ADS  Google Scholar 

  28. O. Mitrofanov, C. Kloc, T. Siegrist, D.V. Lang, W.-Y. So, A.P. Ramirez, Appl. Phys. Lett. 91, 212106 (2007)

    Article  ADS  Google Scholar 

  29. K. Komatsu, Master thesis, Nagoya University, 2003

    Google Scholar 

  30. M. Honda, K. Kanai, K. Komatsu, Y. Ouchi, H. Ishii, K. Seki, J. Appl. Phys. 102, 103704 (2007)

    Article  ADS  Google Scholar 

  31. S. Matsusaka, H. Maruyama, T. Matsuyama, M. Ghadiri, Chem. Eng. Sci. 65, 5781 (2010)

    Article  Google Scholar 

  32. T. Sato, Y. Nakayama, H. Ishii, to be published

    Google Scholar 

  33. B. Winter, M. Faubel, Chem. Rev. 106, 1176 (2006)

    Article  Google Scholar 

  34. I. Watanabe, Bunseki 3, 102 (2006) (in Japanese)

    Google Scholar 

  35. T. Yamashita, T. Miyauchi, Y. Nakayama, H. Ishii, to be published

    Google Scholar 

  36. J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 67, 2281 (1995)

    Article  ADS  Google Scholar 

  37. K. Kanai, M. Honda, H. Ishii, Y. Ouchi, K. Seki, Org. Electron. 13, 309 (2012)

    Article  Google Scholar 

  38. Y. Ozawa, H. Kinjo, T. Sato, Y. Nakayama, H. Ishii, to be published

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Global-COE program at Chiba University (Advanced School for Organic Electronics, G-03, MEXT), KAKENHI (Grants No. 21245042, 22750167, 25288114), and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ishii, H., Kinjo, H., Sato, T., Machida, Si., Nakayama, Y. (2015). Photoelectron Yield Spectroscopy for Organic Materials and Interfaces. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_8

Download citation

Publish with us

Policies and ethics