Advertisement

Structure Matters: Combining X-Ray Scattering and Ultraviolet Photoelectron Spectroscopy for Studying Organic Thin Films

  • Alexander Hinderhofer
  • Keiichirou Yonezawa
  • Kengo Kato
  • Frank Schreiber
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 209)

Abstract

We discuss the relationship between organic film structure and ultraviolet photoelectron spectroscopy (UPS) data. As a useful method for obtaining detailed structural data we first introduce shortly the advantages of X-ray scattering. By combining such structural data and electronic information from UPS new insights in the fundamental principles of organic electronics can be obtained. On the basis of single layer and heterostructures we discuss the dependence of the electronic level alignment and the spectral shape of the HOMO band on the structural properties of organic thin films. Interestingly the intrinsic molecular shape of a compound has a large impact on its electronic response to changes in crystal quality.

Keywords

High Occupied Molecular Orbital High Occupied Molecular Orbital Bragg Reflection Ultra High Vacuum Island Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank T. Hosokai, F. Bussolotti and S. Duhm for helpful discussions and P. Willmott and S. Leake at the Swiss Light Source whose great efforts have made these experiments possible. This research project has been supported by the DFG, the G-COE program at Chiba University. A.H. acknowledges support from the JSPS.

References

  1. 1.
    W. Brütting, S. Berleb, A.G. Mückl, Organic Electronics 2(1), 1 (2001). URL http://www.sciencedirect.com/science/article/B6W6J-42SXF0X-1/1/e711a4bc688f027357e9b1b2be2ab1d7
  2. 2.
    G. Witte, C. Wöll, J. Mater. Res. 19(7), 1889 (2004). DOI  10.1557/JMR.2004.0251 ADSCrossRefGoogle Scholar
  3. 3.
    A. Hinderhofer, F. Schreiber, ChemPhysChem 13(3), 628 (2012). DOI  10.1002/cphc.201100737. URL http://dx.doi.org/10.1002/cphc.201100737
  4. 4.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2001)Google Scholar
  5. 5.
    M. Birkholz, Thin Film Analysis by X-Ray Scattering (Wiley-VCH, Weinheim, 2006)Google Scholar
  6. 6.
    L.G. Parratt, Phys. Rev. 95, 359 (1954)ADSCrossRefGoogle Scholar
  7. 7.
    H. Dosch, Critical Phenomena at Surfaces and Interfaces: Evanescent X-Ray and Neutron Scattering (Springer, Berlin, 1992)CrossRefGoogle Scholar
  8. 8.
    S. Kowarik, Real-time studies of thin film growth of organic semiconductors. Ph.D. thesis, Wadham College, Oxford (2006)Google Scholar
  9. 9.
    R. Matsubara, M. Sakai, K. Kudo, N. Yoshimoto, I. Hirosawa, M. Nakamura, Organic Electronics 12, 195 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Kowarik, K. Broch, A. Hinderhofer, A. Schwartzberg, J.O. Osso, D. Kilcoyne, F. Schreiber, S.R. Leone, J. Phys. Chem. C 114(30), 13061 (2010). DOI  10.1021/jp103713z. URL http://pubs.acs.org/doi/abs/10.1021/jp103713z
  11. 11.
    W. Brütting (ed.), Physics of Organic Semiconductors (Wiley-VCH, Weinheim, 2005)Google Scholar
  12. 12.
    D. Käfer, C. Wöll, G. Witte, Appl. Phys. A 95(1), 273 (2009). URL http://dx.doi.org/10.1007/s00339-008-5011-3
  13. 13.
    C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002)CrossRefGoogle Scholar
  14. 14.
    K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 107(4), 1233 (2007). DOI  10.1021/cr050156n. URL http://pubs.acs.org/doi/abs/10.1021/cr050156n
  15. 15.
    S. Kowarik, A. Gerlach, S. Sellner, L. Cavalcanti, O. Konovalov, F. Schreiber, Appl. Phys. A 95(1), 233 (2009). URL http://dx.doi.org/10.1007/s00339-008-5012-2
  16. 16.
    A. Hinderhofer, T. Hosokai, C. Frank, J. Novák, A. Gerlach, F. Schreiber, J. Phys. Chem. C 115, 16155 (2011)CrossRefGoogle Scholar
  17. 17.
    B. Krause, F. Schreiber, H. Dosch, A. Pimpinelli, O.H. Seeck, Europhys. Lett. 65(3), 372 (2004). URL http://stacks.iop.org/0295-5075/65/i=3/a=372
  18. 18.
    J. Yang, D. Yan, Chem. Soc. Rev. 38, 2634 (2009). DOI  10.1039/B815723P. URL http://dx.doi.org/10.1039/B815723P
  19. 19.
    A. Hinderhofer, A. Gerlach, S. Kowarik, F. Zontone, J. Krug, F. Schreiber, EPL 91(5), 56002 (2010). DOI  10.1209/0295-5075/91/56002. URL http://stacks.iop.org/0295-5075/91/i=5/a=56002
  20. 20.
    J. Wagner, M. Gruber, A. Hinderhofer, A. Wilke, B. Bröker, J. Frisch, P. Amsalem, A. Vollmer, A. Opitz, N. Koch, F. Schreiber, W. Brütting, Adv. Funct. Mater. 20, 4295 (2010). URL http://dx.doi.org/10.1002/adfm.201001028
  21. 21.
    U. Hörmann, J. Wagner, M. Gruber, A. Opitz, W. Brütting, Phys. Stat. Sol. (RRL) 5(7), 241 (2011). DOI  10.1002/pssr.201105238. URL http://dx.doi.org/10.1002/pssr.201105238
  22. 22.
    M. Horlet, M. Kraus, W. Brütting, A. Opitz, Appl. Phys. Lett. 98(23), 233304 (2011). DOI  10.1063/1.3598423. URL http://link.aip.org/link/?APL/98/233304/1
  23. 23.
    D. Kurrle, J. Pflaum, Appl. Phys. Lett. 92(13), 133306 (2008). DOI  10.1063/1.2896654. URL http://link.aip.org/link/?APL/92/133306/1
  24. 24.
    N. Ueno, S. Kera, Prog. Surf. Sci. 83(1012), 490 (2008). DOI  10.1016/j.progsurf.2008.10.002. URL http://www.sciencedirect.com/science/article/pii/S0079681608000567
  25. 25.
  26. 26.
    N. Koch, ChemPhysChem 8(10), 1438 (2007). DOI  10.1002/cphc.200700177. URL http://dx.doi.org/10.1002/cphc.200700177
  27. 27.
    M.A. Heinrich, J. Pflaum, A.K. Tripathi, W. Frey, M.L. Steigerwald, T. Siegrist, J. Phys. Chem. C 111, 18878 (2007)CrossRefGoogle Scholar
  28. 28.
    A. Nelson, J. Appl. Crystallogr. 39(2), 273 (2006). DOI  10.1107/S0021889806005073. URL http://dx.doi.org/10.1107/S0021889806005073
  29. 29.
    T. Hosokai, M. Horie, T. Aoki, S. Nagamatsu, S. Kera, K.K. Okudaira, N. Ueno, J. Phys. Chem. C 112(12), 4643 (2008). DOI  10.1021/jp710835b. URL http://dx.doi.org/10.1021/jp710835b
  30. 30.
    S. Kowarik, A. Gerlach, S. Sellner, F. Schreiber, L. Cavalcanti, O. Konovalov, Phys. Rev. Lett. 96(12), 125504 (2006). DOI  10.1103/PhysRevLett.96.125504. URL http://link.aps.org/abstract/PRL/v96/e125504
  31. 31.
    A. Hinderhofer, T. Hosokai, K. Yonezawa, A. Gerlach, K. Kato, K. Broch, C. Frank, J. Novak, S. Kera, N. Ueno, F. Schreiber, Appl. Phys. Lett. 101, 033307 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R.L. Johnson, A. Vollmer, J.P. Rabe, N. Koch, Nat. Mater. 7(4), 326 (2008). DOI  10.1038/nmat2119. URL http://dx.doi.org/10.1038/nmat2119
  33. 33.
    A. Wilke, P. Amsalem, J. Frisch, B. Brker, A. Vollmer, N. Koch, Appl. Phys. Lett. 98(12), 123304 (2011). DOI DOI: 10.1063/1.3571286. URL http://dx.doi.org/doi/10.1063/1.3571286
  34. 34.
    Y.L. Huang, W. Chen, H. Huang, D.C. Qi, S. Chen, X.Y. Gao, J. Pflaum, A.T.S. Wee, J. Phys. Chem. C 113(21), 9251 (2009). URL http://dx.doi.org/10.1021/jp810804t
  35. 35.
    A.C. Dürr, N. Koch, M. Kelsch, A. Ruehm, J. Ghijsen, R.L. Johnson, J.J. Pireaux, J. Schwartz, F. Schreiber, H. Dosch, A. Kahn, Phys. Rev. B 68, 115428 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    J.Q. Zhong, H.Y. Mao, R. Wang, D.C. Qi, L. Cao, Y.Z. Wang, W. Chen, J. Phys. Chem. C 115(48), 23922 (2011). DOI  10.1021/jp208645f. URL http://pubs.acs.org/doi/abs/10.1021/jp208645f
  37. 37.
    H. Yamane, Y. Yabuuchi, H. Fukagawa, S. Kera, K.K. Okudaira, N. Ueno, J. Appl. Phys. 99(9), 093705 (2006). DOI  10.1063/1.2192978. URL http://link.aip.org/link/?JAP/99/093705/1
  38. 38.
    T. Sueyoshi, H. Kakuta, M. Ono, K. Sakamoto, S. Kera, N. Ueno, Appl. Phys. Lett. 96(9), 093303 (2010). DOI  10.1063/1.3332577. URL http://link.aip.org/link/?APL/96/093303/1
  39. 39.
    H.Y. Mao, F. Bussolotti, D.C. Qi, R. Wang, S. Kera, N. Ueno, A.T.S. Wee, W. Chen, Organic Electronics 12(3), 534 (2011). DOI DOI:  10.1016/j.orgel.2011.01.003. URL http://www.sciencedirect.com/science/article/pii/S1566119911000127
  40. 40.
    T. Hosokai, H. Machida, A. Gerlach, S. Kera, F. Schreiber, N. Ueno, Phys. Rev. B 83, 195310 (2011). DOI  10.1103/PhysRevB.83.195310. URL http://link.aps.org/doi/10.1103/PhysRevB.83.195310
  41. 41.
    F. Schreiber, Phys. Stat. Sol. 201, 1037 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    D. Käfer, L. Ruppel, G. Witte, Phys. Rev. B 75(8), 085309 (2007). DOI  10.1103/PhysRevB.75.085309. URL http://link.aps.org/abstract/PRB/v75/e085309
  43. 43.
    T.V. Desai, A.R. Woll, F. Schreiber, J.R. Engstrom, J. Phys. Chem. C 114(47), 20120 (2010). DOI  10.1021/jp107518f. URL http://pubs.acs.org/doi/abs/10.1021/jp107518f
  44. 44.
    X.N. Zhang, E. Barrena, D.G. de Oteyza, E.D. Souza, H. Dosch, J. Appl. Phys. 104(10), 104308 (2008). DOI  10.1063/1.2977726. URL http://link.aip.org/link/?JAP/104/104308/1
  45. 45.
    T.V. Desai, S. Hong, A.R. Woll, K.J. Hughes, A.P. Kaushik, P. Clancy, J.R. Engstrom, J. Chem. Phys. 134(22), 224702 (2011). DOI  10.1063/1.3591965. URL http://link.aip.org/link/?JCP/134/224702/1
  46. 46.
    R. Hayakawa, A. Turak, X. Zhang, N. Hiroshiba, H. Dosch, T. Chikyow, Y. Wakayama, J. Chem. Phys. 133(3), 034706 (2010). DOI  10.1063/1.3456733. URL http://link.aip.org/link/?JCP/133/034706/1
  47. 47.
    H. Zhu, Q.L. Li, X.J. She, S.D. Wang, Appl. Phys. Lett. 98(24), 243304 (2011). DOI  10.1063/1.3599579. URL http://link.aip.org/link/?APL/98/243304/1
  48. 48.
    H. Yang, T.J. Shin, M.M. Ling, K. Cho, C.Y. Ryu, Z. Bao, J. Am. Chem. Soc. 127(33), 11542 (2005). DOI  10.1021/ja052478e. URL http://pubs.acs.org/doi/abs/10.1021/ja052478e
  49. 49.
    M.C. Gerstenberg, F. Schreiber, T.Y.B. Leung, G. Bracco, S.R. Forrest, G. Scoles, Phys. Rev. B 61(11), 7678 (2000). DOI  10.1103/PhysRevB.61.7678 ADSCrossRefGoogle Scholar
  50. 50.
    S.R. Forrest, Chem. Rev. 97(6), 1793 (1997). DOI  10.1021/cr941014o. URL http://pubs.acs.org/doi/abs/10.1021/cr941014o
  51. 51.
    A. Sassella, M. Campione, A. Borghesi, Rivista del Nuovo Cimento 31, 457 (2008)ADSGoogle Scholar
  52. 52.
    L. Raimondo, M. Moret, M. Campione, A. Borghesi, A. Sassella, J. Phys. Chem. C 115(13), 5880 (2011). DOI  10.1021/jp111754r. URL http://pubs.acs.org/doi/abs/10.1021/jp111754r
  53. 53.
    P. Sullivan, T.S. Jones, A.J. Ferguson, S. Heutz, Appl. Phys. Lett. 91(23), 233114 (2007). DOI  10.1063/1.2821229. URL http://link.aip.org/link/?APL/91/233114/1
  54. 54.
    P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93(7), 3693 (2003). DOI  10.1063/1.1534621. URL http://link.aip.org/link/?JAP/93/3693/1
  55. 55.
    K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, H. Koinuma, Adv. Mater. 18(13), 1713 (2006). URL http://dx.doi.org/10.1002/adma.200502752
  56. 56.
    M. Kraus, S. Richler, A. Opitz, W. Brütting, S. Haas, T. Hasegawa, A. Hinderhofer, F. Schreiber, J. Appl. Phys. 107(9), 094503 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    M. Haemori, J. Yamaguchi, S. Yaginuma, K. Itaka, H. Koinuma, Jpn. J. Appl. Phys. 44(6A), 3740 (2005). DOI  10.1143/JJAP.44.3740. URL http://jjap.jsap.jp/link?JJAP/44/3740/
  58. 58.
    P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger, S.R. Forrest, Phys. Rev. B 56, 3046 (1997). URL http://dx.doi.org/10.1103/PhysRevB.56.3046
  59. 59.
  60. 60.
    L. Kilian, A. Hauschild, R. Temirov, S. Soubatch, A. Schöll, A. Bendounan, F. Reinert, T.L. Lee, F.S. Tautz, M. Sokolowski, E. Umbach, Phys. Rev. Lett. 100, 136103 (2008). DOI  10.1103/PhysRevLett.100.136103. URL http://link.aps.org/doi/10.1103/PhysRevLett.100.136103
  61. 61.
    T.B. Singh, N.S. Sariciftci, H. Yang, L. Yang, B. Plochberger, H. Sitter, Appl. Phys. Lett. 90(21), 213512 (2007). DOI  10.1063/1.2743386. URL http://link.aip.org/link/?APL/90/213512/1
  62. 62.
    S. Yim, T.S. Jones, Appl. Phys. Lett. 94(2), 021911 (2009). DOI  10.1063/1.3072805. URL http://link.aip.org/link/?APL/94/021911/1
  63. 63.
    I. Salzmann, S. Duhm, R. Opitz, R.L. Johnson, J.P. Rabe, N. Koch, J. Appl. Phys. 104(11), 114518 (2008). DOI  10.1063/1.3040003. URL http://link.aip.org/link/?JAP/104/114518/1
  64. 64.
    W. Chen, H. Zhang, H. Huang, L. Chen, A.T.S. Wee, ACS Nano 2(4), 693 (2008). DOI  10.1021/nn800033z. URL http://pubs.acs.org/doi/abs/10.1021/nn800033z
  65. 65.
    J.Q. Zhong, H. Huang, H.Y. Mao, R. Wang, S. Zhong, W. Chen, J. Chem. Phys. 134(15), 154706 (2011). DOI  10.1063/1.3582789. URL http://link.aip.org/link/?JCP/134/154706/1
  66. 66.
    U. Heinemeyer, R. Scholz, L. Gisslén, M.I. Alonso, J.O. Ossó, M. Garriga, A. Hinderhofer, M. Kytka, S. Kowarik, A. Gerlach, F. Schreiber, Phys. Rev. B 78, 085210 (2008). URL http://dx.doi.org/10.1103/PhysRevB.78.085210
  67. 67.
    A.C. Dürr, F. Schreiber, K.A. Ritley, V. Kruppa, J. Krug, H. Dosch, B. Struth, Phys. Rev. Lett. 90, 016104 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    R. Scholz, L. Gisslen, B.E. Schuster, M.B. Casu, T. Chassé, U. Heinemeyer, F. Schreiber, J. Chem. Phys. 134, 014504 (2011). URL http://dx.doi.org/doi:10.1063/1.3514709
  69. 69.
    J. Wagner, M. Gruber, A. Wilke, Y. Tanaka, K. Topczak, A. Steindamm, U. Hörmann, A. Opitz, Y. Nakayama, H. Ishii, J. Pflaum, N. Koch, W. Brütting, J. Appl. Phys. 111(5), 054509 (2012). DOI  10.1063/1.3692050. URL http://link.aip.org/link/?JAP/111/054509/1
  70. 70.
    R.R. Lunt, N.C. Giebink, A.A. Belak, J.B. Benziger, S.R. Forrest, J. Appl. Phys. 105(5), 053711 (2009). DOI  10.1063/1.3079797. URL http://link.aip.org/link/?JAP/105/053711/1
  71. 71.
    A. Hinderhofer, A. Gerlach, K. Broch, T. Hosokai, K. Yonezawa, K. Kato, S. Kera, N. Ueno, F. Schreiber, J. Phys. Chem. C 117(2), 1053 (2013). DOI  10.1021/jp3106056. URL http://pubs.acs.org/doi/abs/10.1021/jp3106056
  72. 72.
    J.L. de Boer, S. van Smaalen, V. Petricek, M. Dusek, M.A. Verheijen, G. Meijer, Chem. Phys. Lett. 219(5–6), 469 (1994). DOI DOI: 10.1016/0009-2614(94)00110-3. URL http://www.sciencedirect.com/science/article/B6TFN-44J6FC9-M4/2/165963913b89bd08a6214011d478c2c0
  73. 73.
    R.W. Lof, M.A. van Veenendaal, B. Koopmans, H.T. Jonkman, G.A. Sawatzky, Phys. Rev. Lett. 68, 3924 (1992). DOI  10.1103/PhysRevLett.68.3924. URL http://link.aps.org/doi/10.1103/PhysRevLett.68.3924
  74. 74.
    S. Krause, Determination of the transport levels in thin films of organic semiconductors. Ph.D. thesis, Universität Würzburg (2008)Google Scholar
  75. 75.
    J.H. Weaver, J.L. Martins, T. Komeda, Y. Chen, T.R. Ohno, G.H. Kroll, N. Troullier, R.E. Haufler, R.E. Smalley, Phys. Rev. Lett. 66, 1741 (1991). DOI  10.1103/PhysRevLett.66.1741. URL http://link.aps.org/doi/10.1103/PhysRevLett.66.1741
  76. 76.
    S. Hasegawa, T. Miyamae, K. Yakushi, H. Inokuchi, K. Seki, N. Ueno, Phys. Rev. B 58, 4927 (1998). DOI  10.1103/PhysRevB.58.4927. URL http://link.aps.org/doi/10.1103/PhysRevB.58.4927
  77. 77.
    O.V. Molodtsova, M. Knupfer, J. Appl. Phys. 99(5), 053704 (2006). DOI  10.1063/1.2175468. URL http://link.aip.org/link/?JAP/99/053704/1
  78. 78.
    T. Liebsch, O. Plotzke, F. Heiser, U. Hergenhahn, O. Hemmers, R. Wehlitz, J. Viefhaus, B. Langer, S.B. Whitfield, U. Becker, Phys. Rev. A 52, 457 (1995). DOI  10.1103/PhysRevA.52.457. URL http://link.aps.org/doi/10.1103/PhysRevA.52.457
  79. 79.
    H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, N. Ueno, Phys. Rev. B 73, 245310 (2006). DOI  10.1103/PhysRevB.73.245310. URL http://link.aps.org/doi/10.1103/PhysRevB.73.245310
  80. 80.
    S. Kera, H. Yamane, N. Ueno, Prog. Surf. Sci. 84, 135 (2009). DOI  10.1016/j.progsurf.2009.03.002. URL http://www.sciencedirect.com/science/article/pii/S007968160900029X
  81. 81.
    P. He, S. Bao, C. Yu, Y. Xu, Surf. Sci. 328(3), 287 (1995). DOI  10.1016/0039-6028(95)00036-4. URL http://www.sciencedirect.com/science/article/pii/0039602895000364
  82. 82.
    R. Tycko, G. Dabbagh, R.M. Fleming, R.C. Haddon, A.V. Makhija, S.M. Zahurak, Phys. Rev. Lett. 67, 1886 (1991). DOI  10.1103/PhysRevLett.67.1886. URL http://link.aps.org/doi/10.1103/PhysRevLett.67.1886
  83. 83.
    H. Fukagawa, S. Kera, T. Kataoka, S. Hosoumi, Y. Watanabe, K. Kudo, N. Ueno, Adv. Mater. 19(5), 665 (2007). URL http://dx.doi.org/10.1002/adma.200601678
  84. 84.
    M.T. Greiner, M.G. Helander, W.M. Tang, Z.B. Wang, J. Qiu, Z.H. Lu, Nat. Mater. 11(1), 76 (2012). DOI  10.1038/nmat3159. URL http://dx.doi.org/10.1038/nmat3159
  85. 85.
    S. Braun, W.R. Salaneck, M. Fahlman, Adv. Mater. 21(14–15), 1450 (2009). DOI  10.1002/adma.200802893. URL http://dx.doi.org/10.1002/adma.200802893
  86. 86.
    H. Vazquez, W. Gao, F. Flores, A. Kahn, Phys. Rev. B 71(4), 041306 (2005). DOI  10.1103/PhysRevB.71.041306. URL http://link.aps.org/abstract/PRB/v71/e041306
  87. 87.
    M. Linares, D. Beljonne, J. Cornil, K. Lancaster, J.L. Brédas, S. Verlaak, A. Mityashin, P. Heremans, A. Fuchs, C. Lennartz, J. Idé, R. Méreau, P. Aurel, L. Ducasse, F. Castet, J. Phys. Chem. C 114(7), 3215 (2010). DOI  10.1021/jp910005g. URL http://pubs.acs.org/doi/abs/10.1021/jp910005g
  88. 88.
    J. Ivanco, Thin Solid Films 520(11), 3975 (2012). DOI  10.1016/j.tsf.2012.01.035. URL http://www.sciencedirect.com/science/article/pii/S0040609012000739

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Alexander Hinderhofer
    • 1
  • Keiichirou Yonezawa
    • 1
  • Kengo Kato
    • 1
  • Frank Schreiber
    • 2
  1. 1.Department of Nanomaterial Science, Graduate School of Advanced Integration ScienceChiba UniversityChibaJapan
  2. 2.Institute for Applied PhysicsUniversity of TübingenTübingenGermany

Personalised recommendations