Skip to main content

Vertical Bonding Distances Impact Organic-Metal Interface Energetics

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

Abstract

The X-ray standing wave (XSW) technique is ideally suited to measure element-specific bonding distances of organic (sub)monolayers on metal single crystalline surfaces. These bonding distances are crucial for the energy-level alignment and thus for the charge injection properties at these interfaces. We review experimentally determined bonding distances of several prototypical interfaces. Even for weakly interacting systems site-specific interactions can lead to adsorption induced molecular distortions and consequently to additional intramolecular dipoles, which impact the energy-level alignment. Guidelines to tune adsorption heights by rational molecular design are discussed. For strongly interacting system (charge transfer complex formation) distortions of the molecules on the substrate play a pivotal role in the process of surface-induced aromatic stabilization, which results in metallic organic monolayers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the literature usually this decrease in ϕ by the push-back effect is attributed to an interface dipole, although strictly speaking an existing interface dipole (at the vacuum-metal interface) is reduced by the organic-metal interface formation.

  2. 2.

    Note, that for a centrosymmetric crystal, \( {\chi}_H={\chi}_H^{\ast } \) and therefore \( {\left({\chi}_H{\chi}_{\overline{H}}\right)}^{1/ 2}=\left|{\chi}_H\right| \).

  3. 3.

    Depending on the experimental setup, i.e. particularly the emission angle, non-dipole corrections [15] have to be included.

  4. 4.

    “Conventional UPS” is used here in contrast to “ultrahigh-sensitivity UPS” [8, 49], which can also detect tiny density of states which are below the detection limit of most current UPS set-ups.

References

  1. N. Koch, J. Phys.: Condens. Matter 20, 184008 (2008)

    ADS  Google Scholar 

  2. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999)

    Article  Google Scholar 

  3. A. Kahn, N. Koch, W.Y. Gao, J. Poly. Sci. B 41, 2529 (2003)

    Article  Google Scholar 

  4. S. Braun, W.R. Salaneck, M. Fahlman, Adv. Mater. 21, 1450 (2009)

    Article  Google Scholar 

  5. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, K. Seki, Phys. Stat. Sol. A 201, 1075 (2004)

    Article  ADS  Google Scholar 

  6. I. Lange, J.C. Blakesley, J. Frisch, A. Vollmer, N. Koch, D. Neher, Phys. Rev. Lett. 106, 216402 (2011)

    Article  ADS  Google Scholar 

  7. H.Y. Mao, F. Bussolotti, D.C. Qi, R. Wang, S. Kera, N. Ueno, A.T.S. Wee, W. Chen, Org. Electron. 12, 534 (2011)

    Article  Google Scholar 

  8. F. Bussolotti, S. Kera, K. Kudo, A. Kahn, N. Ueno, Phys. Rev. Lett. 110, 267602 (2013)

    Article  ADS  Google Scholar 

  9. J. Hwang, A. Wan, A. Kahn, Mater. Sci. Eng. R 64, 1 (2009)

    Article  Google Scholar 

  10. N. Ueno, S. Kera, Prog. Surf. Sci. 83, 490 (2008)

    Article  ADS  Google Scholar 

  11. N. Ueno, in Fundamental aspects on organic semiconductors and their interfaces: Experimental electronic structure of organic-device related systems, ed. by H. Ishii, K. Kudo, T. Nakayama, N. Ueno (Springer, NewYork, 2014)

    Google Scholar 

  12. Y. Nakayama, S. Duhm, Q. Xin, S. Kera, H. Ishii, N. Ueno, in Ultraviolet photoelectron spectroscopy (UPS) I: Band dispersion measurements of “Insulating” organic single crystals, ed. by H. Ishii, K. Kudo, T. Nakayama, N. Ueno (Springer, NewYork, 2014),

    Google Scholar 

  13. R. Otero, J.M. Gallego, A.L. Vázquez de Parga, N. Martín, R. Miranda, Adv. Mater. 23, 5148 (2011)

    Article  Google Scholar 

  14. G. Witte, C. Wöll, Phys. Stat. Sol. A 205, 497 (2008)

    Article  ADS  Google Scholar 

  15. D.P. Woodruff, Rep. Prog. Phys. 68, 743 (2005)

    Article  ADS  Google Scholar 

  16. J. Zegenhagen, Surf. Sci. Rep. 18, 199 (1993)

    Article  ADS  Google Scholar 

  17. A. Gerlach, C. Bürker, T. Hosokai, F. Schreiber, in The Molecule-Metal Interface, ed. by N. Koch, N. Ueno, A.T.S. Wee (Wiley-VCH, 2013), pp. 153–172

    Google Scholar 

  18. G. Mercurio, E.R. McNellis, I. Martin, S. Hagen, F. Leyssner, S. Soubatch, J. Meyer, M. Wolf, P. Tegeder, F.S. Tautz, K. Reuter, Phys. Rev. Lett. 104, 036102 (2010)

    Article  ADS  Google Scholar 

  19. V.G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012)

    Article  ADS  Google Scholar 

  20. C. Bürker, N. Ferri, A. Tkatchenko, A. Gerlach, J. Niederhausen, T. Hosokai, S. Duhm, J. Zegenhagen, N. Koch, F. Schreiber, Phys. Rev. B 87, 165443 (2013)

    Article  ADS  Google Scholar 

  21. A. Natan, L. Kronik, H. Haick, R. Tung, Adv. Mater. 19, 4103 (2007)

    Article  Google Scholar 

  22. F. Rissner, G.M. Rangger, O.T. Hofmann, A.M. Track, G. Heimel, E. Zojer, ACS Nano 3, 3513 (2009)

    Article  Google Scholar 

  23. H. Fukagawa, H. Yamane, S. Kera, K.K. Okudaira, N. Ueno, Phys. Rev. B 73, 041302(R) (2006)

    Google Scholar 

  24. P.S. Bagus, V. Staemmler, C. Wöll, Phys. Rev. Lett. 89, 096104 (2002)

    Article  ADS  Google Scholar 

  25. K. Toyoda, I. Hamada, K. Lee, S. Yanagisawa, Y. Morikawa, J. Chem. Phys. 132, 134703 (2010)

    Article  ADS  Google Scholar 

  26. P.C. Rusu, G. Giovannetti, C. Weijtens, R. Coehoorn, G. Brocks, Phys. Rev. B 81, 125403 (2010)

    Article  ADS  Google Scholar 

  27. S. Duhm, C. Bürker, J. Niederhausen, I. Salzmann, T. Hosokai, J. Duvernay, S. Kera, F. Schreiber, N. Koch, N. Ueno, A. Gerlach, ACS Appl. Mater. Interfaces 5, 9377 (2013)

    Article  Google Scholar 

  28. N. Koch, A. Gerlach, S. Duhm, H. Glowatzki, G. Heimel, A. Vollmer, Y. Sakamoto, T. Suzuki, J. Zegenhagen, J.P. Rabe, F. Schreiber, J. Am. Chem. Soc. 130, 7300 (2008)

    Article  Google Scholar 

  29. S. Duhm, S. Hosoumi, I. Salzmann, A. Gerlach, M. Oehzelt, B. Wedl, T.L. Lee, F. Schreiber, N. Koch, N. Ueno, S. Kera, Phys. Rev. B 81, 045418 (2010)

    Article  ADS  Google Scholar 

  30. G. Heimel, S. Duhm, I. Salzmann, A. Gerlach, A. Strozecka, J. Niederhausen, C. Bürker, T. Hosokai, I. Fernandez-Torrente, G. Schulze, S. Winkler, A. Wilke, R. Schlesinger, J. Frisch, B. Bröker, A. Vollmer, B. Detlefs, J. Pflaum, S. Kera, K.J. Franke, N. Ueno, J.I. Pascual, F. Schreiber, N. Koch, Nat. Chem. 5, 187 (2013)

    Article  Google Scholar 

  31. H. Yamane, A. Gerlach, S. Duhm, Y. Tanaka, T. Hosokai, Y.Y. Mi, J. Zegenhagen, N. Koch, K. Seki, F. Schreiber, Phys. Rev. Lett. 105, 046103 (2010)

    Article  ADS  Google Scholar 

  32. A. Gerlach, T. Hosokai, S. Duhm, S. Kera, O.T. Hofmann, E. Zojer, J. Zegenhagen, F. Schreiber, Phys. Rev. Lett. 106, 156102 (2011)

    Article  ADS  Google Scholar 

  33. S.K.M. Henze, O. Bauer, T.L. Lee, M. Sokolowski, F.S. Tautz, Surf. Sci. 601, 1566 (2007)

    Article  ADS  Google Scholar 

  34. A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94, 036106 (2005)

    Article  ADS  Google Scholar 

  35. L. Romaner, G. Heimel, J.L. Brédas, A. Gerlach, F. Schreiber, R.L. Johnson, J. Zegenhagen, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 99, 256801 (2007)

    Article  ADS  Google Scholar 

  36. N. Koch, S. Duhm, J.P. Rabe, A. Vollmer, R.L. Johnson, Phys. Rev. Lett. 95, 237601 (2005)

    Article  ADS  Google Scholar 

  37. T. Fujikawa, in Theory of photoelectron spectroscopy, ed. by H. Ishii, K. Kudo, T. Nakayama, N. Ueno (Springer, NewYork, 2014)

    Google Scholar 

  38. D.B. Dougherty, W. Jin, W.G. Cullen, J.E. Reutt-Robey, S.W. Robey, J. Phys. Chem. C 112, 20334 (2008)

    Article  Google Scholar 

  39. M. Eremtchenko, R. Temirov, D. Bauer, J.A. Schaefer, F.S. Tautz, Phys. Rev. B 72, 115430 (2005)

    Article  ADS  Google Scholar 

  40. C. Stadler, S. Hansen, I. Kröger, C. Kumpf, E. Umbach, Nat. Phys. 5, 153 (2009)

    Article  Google Scholar 

  41. I. Kröger, B. Stadtmüller, C. Kleimann, P. Rajput, C. Kumpf, Phys. Rev. B 83, 195414 (2011)

    Article  ADS  Google Scholar 

  42. A. Gerlach, F. Schreiber, S. Sellner, H. Dosch, I.A. Vartanyants, B.C.C. Cowie, T.L. Lee, J. Zegenhagen, Phys. Rev. B 71, 205425 (2005)

    Article  ADS  Google Scholar 

  43. I. Kröger, B. Stadtmüller, C. Stadler, J. Ziroff, M. Kochler, A. Stahl, F. Pollinger, T.L. Lee, J. Zegenhagen, F. Reinert, C. Kumpf, New J. Phys. 12, 083038 (2010)

    Article  ADS  Google Scholar 

  44. C. Stadler, S. Hansen, F. Pollinger, C. Kumpf, E. Umbach, T.L. Lee, J. Zegenhagen, Phys. Rev. B 74, 035404 (2006)

    Article  ADS  Google Scholar 

  45. I. Kröger, P. Bayersdorfer, B. Stadtmüller, C. Kleimann, G. Mercurio, F. Reinert, C. Kumpf, Phys. Rev. B 86, 195412 (2012)

    Article  ADS  Google Scholar 

  46. J. Gantz, D. Placencia, A. Giordano, S.R. Marder, N.R. Armstrong, J. Phys. Chem. C 117, 1205 (2013)

    Article  Google Scholar 

  47. Y.L. Huang, W. Chen, F. Bussolotti, T.C. Niu, A.T.S. Wee, N. Ueno, S. Kera, Phys. Rev. B 87, 085205 (2013)

    Article  ADS  Google Scholar 

  48. S. Duhm, Q. Xin, N. Koch, N. Ueno, S. Kera, Org. Electron. 12, 903 (2011)

    Article  Google Scholar 

  49. N. Ueno, T. Sueyoshi, F. Bussolotti, S. Kera, in Ultraviolet photoelectron spectroscopy (UPS) III: Direct study of “invisible” band gap states by ultrahigh-sensitivity UPS, ed. by H. Ishii, K. Kudo, T. Nakayama, N. Ueno (Springer, NewYork, 2014)

    Google Scholar 

  50. J. Niederhausen, P. Amsalem, J. Frisch, A. Wilke, A. Vollmer, R. Rieger, K. Müllen, J.P. Rabe, N. Koch, Phys. Rev. B 84, 165302 (2011)

    Article  ADS  Google Scholar 

  51. S. Duhm, H. Glowatzki, V. Cimpeanu, J. Klankermayer, J.P. Rabe, R.L. Johnson, N. Koch, J. Phys. Chem. B 110, 21069 (2006)

    Article  Google Scholar 

  52. H. Glowatzki, B. Bröker, R.P. Blum, O.T. Hofmann, A. Vollmer, R. Rieger, K. Müllen, E. Zojer, J.P. Rabe, N. Koch, Nano Lett. 8, 3825 (2008)

    Article  ADS  Google Scholar 

  53. A. Gerlach, S. Sellner, F. Schreiber, N. Koch, J. Zegenhagen. Phys. Rev. B 75, 045401 (2007)

    Article  ADS  Google Scholar 

  54. O. Bauer, G. Mercurio, M. Willenbockel, W. Reckien, C.H. Schmitz, B. Fiedler, S. Soubatch, T. Bredow, F.S. Tautz, M. Sokolowski, Phys. Rev. B 86, 235431 (2012)

    Article  ADS  Google Scholar 

  55. C. Stadler, S. Hansen, A. Schöll, T.L. Lee, J. Zegenhagen, C. Kumpf, E. Umbach, New J. Phys. 9, 50 (2007)

    Article  ADS  Google Scholar 

  56. N. Koch, A. Vollmer, Appl. Phys. Lett. 89, 162107 (2006)

    Article  ADS  Google Scholar 

  57. S. Duhm, A. Gerlach, I. Salzmann, B. Bröker, R.L. Johnson, F. Schreiber, N. Koch, Org. Electron. 9, 111 (2008)

    Article  Google Scholar 

  58. E.R. McNellis, G. Mercurio, S. Hagen, F. Leyssner, J. Meyer, S. Soubatch, M. Wolf, K. Reuter, P. Tegeder, F.S. Tautz, Chem. Phys. Lett. 499, 247 (2010)

    Article  ADS  Google Scholar 

  59. T.C. Tseng, C. Urban, Y. Wang, R. Otero, S.L. Tait, M. Alcamí, D. Écija, M. Trelka, J.M. Gallego, N. Lin, M. Konuma, U. Starke, A. Nefedov, A. Langner, C. Wöll, M.A. Herranz, F. Martín, N. Martín, K. Kern, R. Miranda, Nat. Chem. 2, 374 (2010)

    Article  Google Scholar 

  60. J. Zegenhagen, B. Detlefs, T.L. Lee, S. Thiess, H. Isern, L. Petit, L. André, J. Roy, Y.Y. Mi, I. Joumard, J. Electron Spectrosc. Relat. Phenom. 178–179, 258 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

All measurements of bonding distances discussed in this chapter have been performed at beamline ID32 [60] at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). Analysis of experimental data was done using the software package dare (developed at the ESRF). The beamtimes have been supported in an outstanding way by the staff of ID32, namely T.-L. Lee, Y.Y. Mi, J. Roy, P. Rajput, J. Duvernay, B. Detlefs and J. Zegenhagen. We thank J. Niederhausen S. Kera, N. Ueno, G. Heimel, I. Salzmann, N. Koch, H. Yamane, E. Zojer and F. Schreiber for many fruitful discussions and most of them also for help during the beamtimes. The work which resulted in the publications [20, 2732] has been supported by the G-COE of Chiba University. In addition, TH and SD gratefully acknowledge financial support by scholarships from the Alexander von Humboldt-Foundation and the Japan Society for the Promotion of Science, respectively. SD is also affiliated with the Soochow University-Western University Centre for Synchrotron Radiation Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steffen Duhm or Alexander Gerlach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Duhm, S., Bürker, C., Hosokai, T., Gerlach, A. (2015). Vertical Bonding Distances Impact Organic-Metal Interface Energetics. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_6

Download citation

Publish with us

Policies and ethics