Skip to main content

Vortex Lasers Twist Materials to Form Chiral Nanostructures

  • Chapter
  • First Online:
Electronic Processes in Organic Electronics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 209))

  • 2238 Accesses

Abstract

This chapter describes a research on chiral metal structures on the nanoscale (chiral metal nanostructures) formed by the irradiation of an optical vortex with orbital angular momentum. The purpose of the present research has been to clarify the relationship between the orbital, spin, and total angular momenta of light and nanostructures through laser ablation processes. As a result, the orbital angular momentum of the optical vortex is transferred to the metal so as to create a chiral nanostructure response by the optical vortex helicity.

The chirality of the nanostructures can also be selectively controlled merely by changing the sign of the total angular momentum. The total angular momentum of light further determines the spiral spatial frequency of the chiral nanostructures.

By adjusting the numerical aperture of a focusing objective lens and the incident laser power, a chiral nanostructure with a tip curvature of less than 40 nm, corresponding to 1/25th of the laser wavelength (1,064 nm), was successfully fabricated. The chemical composition of the nanostructure was almost identical to that of the substrate. A two-dimensional 5 × 5 nanostructure array was also fabricated.

We also address a chiral surface relief (termed ‘conch’-shaped relief) formation in an azo-polymer through photo-isomerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  2. M. Padgett, J. Courtial, L. Allen, Optical vortices and their propagation. Phys. Today 57, 35–40 (2004)

    Article  ADS  Google Scholar 

  3. S. Franke-Arnold, L. Allen, M.J. Padgett, Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008)

    Article  Google Scholar 

  4. Q. Zhang, Properties of circularly polarized vortex beams. Opt. Lett. 31, 867–869 (2006)

    Article  ADS  Google Scholar 

  5. N.B. Simpson, K. Dholakia, L. Allen, M.J. Padgett, Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997)

    Article  ADS  Google Scholar 

  6. A.T. O’Neil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601--1-4 (2002)

    ADS  Google Scholar 

  7. D.G. Grier, A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Article  ADS  Google Scholar 

  8. V. Skarka, N.B. Aleksi´c, V.I. Berezhiani, Evolution of singular optical pulses towards vortex solitons and filamentation in air. Phys. Lett. A 319, 317–324 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Bretschneider, C. Eggeling, S.W. Hell, Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103--1-4 (2007)

    Article  ADS  Google Scholar 

  10. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, M. Fujii, Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique. Opt. Express 11, 3271–3276 (2003)

    Article  ADS  Google Scholar 

  11. K. Ladavac, D.G. Grier, Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004)

    Article  ADS  Google Scholar 

  12. M. Okida, T. Omatsu, M. Itoh, T. Yatagai, Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3 μm bounce laser. Opt. Express 15, 7616–7622 (2007)

    Article  ADS  Google Scholar 

  13. M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, R. Morita, Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator. Appl. Phys. B 95, 69–73 (2009)

    Article  ADS  Google Scholar 

  14. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier. Opt. Express 19, 994–999 (2011)

    Article  Google Scholar 

  15. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, T. Omatsu, Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier. Opt. Express 19, 14420–14425 (2011)

    Article  ADS  Google Scholar 

  16. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu, Optical vortex laser ablation. Opt. Express 18, 2144–2151 (2010)

    Article  ADS  Google Scholar 

  17. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita, Metal microneedle fabrication using twisted light with spin. Opt. Express 18, 17967–17973 (2010)

    Article  ADS  Google Scholar 

  18. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu, Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645–3649 (2012)

    Article  ADS  Google Scholar 

  19. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, T. Omatsu, Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603--1-5 (2013)

    Article  ADS  Google Scholar 

  20. N.K. Viswanathan, D.Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S.K. Tripathy, Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941 (1999)

    Article  Google Scholar 

  21. M. Watabe, G. Juman, K. Miyamoto, T. Omatsu, Light induced conch-shaped relief in an azo-polymer film. Sci. Rep. 4, 4281 (2014)

    Google Scholar 

  22. C.J. Barrett, A.L. Natansohn, P.L. Rochon, Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films. Phys. Chem. 100, 8836 (1996)

    Article  Google Scholar 

  23. H. Ishitobi, M. Tanabe, Z. Sekkat, S. Kawata, The anisotropic nanomovement of azo-polymers. Opt. Express 15, 652 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of a Research Grant (CREST) from Japan Science and Technology Agency. We would also like to thank Ms. Mizuki Watabe from Chiba University and Professor R. Morita from Hokkaido University for their productive helps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashige Omatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Omatsu, T., Aoki, N., Miyamoto, K. (2015). Vortex Lasers Twist Materials to Form Chiral Nanostructures. In: Ishii, H., Kudo, K., Nakayama, T., Ueno, N. (eds) Electronic Processes in Organic Electronics. Springer Series in Materials Science, vol 209. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55206-2_19

Download citation

Publish with us

Policies and ethics