Numerical Approach to Charge Transport Problems on Organic Molecular Crystals

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 209)


Understanding the charge transport properties of molecular crystals, such as organic semiconductors, from the atomistic viewpoint is an important and serious issue in not only basic science but also in the design of various electron devices. First we introduce some problems in studying the charge transport of organic semiconductors. Then we present our theoretical study on charge transport using the time-dependent wave-packet diffusion (TD-WPD) method, taking polaron effects into account. As an example, we investigate the transport properties of pentacene crystals coupled with the inter- and intramolecular vibrations within the mixed Holstein–Peierls model, which describes both hopping and bandlike transport behaviors due to the formation of small and large polarons. Taking into account the static disorder, which inevitably exists in molecular crystals, we present the temperature dependence of charge-transport properties in competition among the thermal fluctuation of molecular motion, polaron formation, and static disorder.


Organic Semiconductor Static Disorder Kubo Formula Polaron State Intramolecular Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank the 21C0E program of Chiba University for the financial and educational support to my student life. The knowledge, which I obtained from activities of this program, introduced me to the study of organic semiconductors recently. I also would like to thank Prof. Nobuhiko Kobayashi of University of Tsukuba and Dr. Kenji Hirose of NEC for valuable comments and suggestions. This work was supported by the Grant-in-Aid for Young Scientists B [24760024] from the Japan Society for the Promotion of Science.


  1. 1.
    R.G. Kepler, Phys. Rev. 119, 1226 (1960)ADSCrossRefGoogle Scholar
  2. 2.
    O.H. LeBlanc, J. Chem. Phys. 33, 626 (1960)ADSCrossRefGoogle Scholar
  3. 3.
    L. Friedman, Phys. Rev. 133, A1668 (1964)ADSCrossRefGoogle Scholar
  4. 4.
    H. Sumi, J. Phys. Soc. Jpn. 33, 327 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    K. Kudo, M. Yamashina, T. Moriizumi, Jpn. J. Appl. Phys. 23, 130 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 18, 699 (1987)CrossRefGoogle Scholar
  7. 7.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl. Phys. 30, L1941 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 85, 5757 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    S.F. Nelson, Y.-Y. Lin, D.J. Gundlach, T.N. Jackson, Appl. Phys. Lett. 72, 1854 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99 (2002)CrossRefGoogle Scholar
  15. 15.
    V. Podzorov, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kiguchi, M. Nakayama, K. Fujiwara, K. Ueno, T. Shimada, K. Saiki, Jpn. J. Appl. Phys. 42, L1408 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    O.D. Jurchescu, J. Baas, T.T.M. Palstra, Appl. Phys. Lett. 84, 3061 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    J. Takeya, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, Y. Iwasa, Jpn. J. Appl. Phys. 44, L1393 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)CrossRefGoogle Scholar
  20. 20.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Oliver, R. Silbey, J.-L. Brédas, Chem. Rev. 107, 926 (2007)CrossRefGoogle Scholar
  21. 21.
    W.L. Kalb, B. Batlogg, Phys. Rev. B 81, 035327 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Marcus, Rev. Mod. Phys. 65, 599 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Bao, J. Locklin, Organic Field-Effect Transistors: Optical Science and Engineering Series (CRC Press, London, New York, 2007)CrossRefGoogle Scholar
  24. 24.
    T. Holstein, Ann. Phys. 8, 325 (1959); Ann. Phys. 8, 343 (1959)Google Scholar
  25. 25.
    J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    H. Yamane, S. Nagamatsu, H. Fukagawa, S. Kera, R. Friedlein, K.K. Okudaira, N. Ueno, Phys. Rev. B 72, 153412 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    H. Kakuta, T. Hirahara, I Matsuda, T. Nagao, S. Hasegawa, N. Ueno, K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007)Google Scholar
  28. 28.
    S.-I. Machida, Y. Nakayama, S. Duhm, Q. Xin, A. Funakoshi, N. Ogawa, S. Kera, N. Ueno, H. Ishii, Phys. Rev. Lett. 104, 156401 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    V. Podzorov, E. Menard, J.A. Rogers, M.E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Yamagishi, J. Soeda, T. Uemura, Y. Okada, Y. Takatsuki, T. Nishikawa, Y. Nakazawa, I. Doi, K. Takimiya, J. Takeya, Phys. Rev. B 81, 161306(R) (2010)Google Scholar
  31. 31.
    J. Takeya, C. Goldmann, S. Haas, K.P. Pernstich, B. Ketterer, B. Batlogg, J. Appl. Phys. 94, 5800 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    K. Marumoto, S.-I. Kuroda, T. Takenobu, Y. Iwasa, Phys. Rev. Lett. 97, 256603 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A.S. Mishchenko, H. Matsui, T. Hasegawa, Phys. Rev. B 85, 085211 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    H. Matsui, T. Hasegawa, Y. Tokura, M. Hiraoka, T. Yamada, Phys. Rev. Lett. 100, 126601 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    N. Ohashi, H. Tomii, R. Matsubara, M. Sakai, K. Kudo, M. Nakamura, Appl. Phys. Lett. 91, 162105 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    S. Yogev, E. Halpern, R. Matsubara, M. Nakamura, Y. Rosenwaks, Phys. Rev. B 84, 165124 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Troisi, G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    A. Troisi, G. Orlandi, J. Phys. Chem. A 110, 4065 (2006)CrossRefGoogle Scholar
  39. 39.
    S. Fratini, S. Ciuchi, Phys. Rev. Lett. 103, 266601 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    S. Ciuchi, S. Fratini, D. Mayou, Phys. Rev. B 83, 081202(R) (2011)Google Scholar
  41. 41.
    J. Böhlin, M. Linares, S. Stafström, Phys. Rev. B 83, 085209 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    N. Koch, A. Vollmer, I. Salzmann, B. Nickel, H. Weiss, J.P. Rabe, Phys. Rev. Lett. 96, 156803 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Li, V. Coropceanu, J.-L. Brédas, J. Phys. Chem. Lett. 3, 3325 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Hannewald, V.M. Stojanović, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner, Phys. Rev. B 69, 075211 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    K. Hannewald, P.A. Bobbert, Appl. Phys. Lett. 85, 1535 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    F. Ortmann, F. Bechstedt, K. Hannewald, Phys. Rev. B 79, 235206 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    F. Ortmann, S. Roche, Phys. Rev. B 84, 180302(R) (2011)Google Scholar
  48. 48.
    V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J.A. Rogers, M.E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    S. Roche, D. Mayou, Phys. Rev. Lett. 79, 2518 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    S. Roche, J. Jiang, F. Triozon, R. Saito, Phys. Rev. Lett. 95, 076803 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    H. Ishii, N. Kobayashi, K. Hirose, Appl. Phys. Express 1, 123002 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    H. Ishii, N. Kobayashi, K. Hirose, Phys. Rev. B 82, 085435 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    S.M. Sze, Semiconductor Devices: Physics and Technology, 2nd edn. (Wiley, Hoboken, New Jersey, 2001)Google Scholar
  54. 54.
    D.K. Ferry, Semiconductor Transport (Taylor & Francis, London, 2000)Google Scholar
  55. 55.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)ADSCrossRefGoogle Scholar
  56. 56.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B 22, 2099 (1980)ADSCrossRefGoogle Scholar
  57. 57.
    H. Ishii, K. Honma, N. Kobayashi, K. Hirose, Phys. Rev. B 85, 245206 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    H. Ishii, S. Roche, N. Kobayashi, K. Hirose, Phys. Rev. Lett. 104, 116801 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    H. Ishii, N. Kobayashi, K. Hirose, Appl. Phys. Express 3, 095102 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    J.-F. Chang, T. Sakanoue, Y. Olivier, T. Uemura, M.-B. Dufourg-Madec, S.G. Yeates, J. Cornil, J. Takeya, A. Troisi, H. Sirringhaus, Phys. Rev. Lett. 107, 066601 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    S. Grimme, J. Comp. Chem. 25, 1463 (2004)CrossRefGoogle Scholar
  62. 62.
    T. Uemura, T. Fukami, H. Ishii, N. Kobayashi, K. Hirose, J. Takeya (in preparation)Google Scholar
  63. 63.
    K. Hummer, C. Ambrosch-Draxl, Phys. Rev. B 72, 205205 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    J.L. Brédas, J.P. Calbert, D.A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci. USA 99, 5804 (2002)ADSCrossRefGoogle Scholar
  65. 65.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery Jr., We use the GAMESS program at DFT-D/B3LYP-D3/6–31G(d) level. J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  66. 66.
    I. Natkaniec, E.L. Bokhenkov, B. Dorner, J. Kalus, G.A. Mackenzie, G.S. Pawley, U. Schmelzer, E.F. Sheka, J. Phys. C Solid State Phys. 13, 4265 (1980)ADSCrossRefGoogle Scholar
  67. 67.
    J. Lei, Y. Shimoi, J. Phys. Soc. Jpn. 80, 034702 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, T. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, We Use the Gaussian03 Program at B3LYP/6-31G(d) Level: GAUSSIAN 03, Revision B. 03 (Gaussian Inc., Pittsburgh, 2003)Google Scholar
  69. 69.
    T. Markussen, R. Rurali, M. Brandbyge, A.-P. Jauho, Phys. Rev. B 74, 245313 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    I.N. Hulea, S. Fratini, H. Xie, C.L. Mulder, N.N. Iossad, G. Rastelli, S. Ciuchi, A.F. Morpurgo, Nat. Mater. 5, 982 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    N. Karl, Synth. Met. 133, 649 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.JST-PRESTO, University of TsukubaTsukubaJapan
  2. 2.Division of Applied PhysicsFaculty of Pure and Applied Sciences, University of TsukubaTsukubaJapan

Personalised recommendations