Advertisement

Theory of Photoelectron Spectroscopy

  • Takashi Fujikawa
  • Kaori Niki
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 209)

Abstract

Some features in photoemission theory from organic solids are reviewed starting from many-body scattering theory. This theoretical approach is direct and transparent, however, the extension to discuss temperature effects is rather difficult. In order to discuss phonon and many-body effects we build a theoretical frame based on Keldysh Green’s functions. Phonon effects such as Debye–Waller factor, electron–phonon interaction and recoil effects are extensively discussed. For the practical calculations multiple scattering formulas work so well. Different features obtained from UPS and XPS analyses are discussed for the excitations from extended levels.

Keywords

High Occupied Molecular Orbital Recoil Effect Waller Factor Photoemission Spectrum Crystal Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Hüfner, Photoemission Spectroscopies and Applications, 3rd edn. (Springer, New York, 2003)Google Scholar
  2. 2.
    N. Ueno, S. Kera, Prog. Surf. Sci. 83, 490 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    I.B. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  4. 4.
    W. Bardyszewski, L. Hedin, Physica Scripta 32, 439 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    L. Hedin, J. Michiels, J. Inglesfield, Phys. Rev. B 58, 15565 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    L. Hedin, in Solid State Photoemission and Related Methods, ed. by W.A. Schattke, M.A. Van Hove (Wiley-VCH, Weinheim, 2003), pp. 116–140Google Scholar
  7. 7.
    C. Caroli, D. Leder-Rozenblatt, B. Roulet, D. Saint-James, Phys. Rev. B 8, 4552 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    C.-O. Almbladh, Physica Scripta 32, 341 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 123, 19 (2002)CrossRefGoogle Scholar
  10. 10.
    T. Fujikawa, H. Arai, Chem. Phys. Lett. 368, 147 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 149, 61 (2005)CrossRefGoogle Scholar
  12. 12.
    T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 136, 85 (2004)CrossRefGoogle Scholar
  13. 13.
    T. Fujikawa, L. Hedin, Phys. Rev. B 40, 11507 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    D.F. DuBois, Lecture in Theoretical Physics, ed. by W.E. Brittin (Gordon and Breach, New York, 1967), pp. 469–619Google Scholar
  15. 15.
    D.C. Langreth, Linear and Nonlinear Transport in Solids, ed. by J. Devreese, V.E. van Doren (Plenum, New York, 1976), 3 pGoogle Scholar
  16. 16.
    H. Arai, T. Fujikawa, Phys. Rev. B 72, 075102 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    J. Osterwalder, T. Greber, S. Hüfner, L. Schlapbach, Phys. Rev. Lett. 64, 2683 (1990)ADSCrossRefGoogle Scholar
  18. 18.
    T. Fujikawa, H. Arai, XAFS13, ed. by E. Hedman, P. Pianetta. AIP-Conference Proceedings, vol. CP882, p. 75 (American Institute of Physics, Melville, 2007)Google Scholar
  19. 19.
    G. Baym, Ann. Phys. 14, 1 (1962)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    L. Hedin, S. Lundqvist, Solid State Physics, vol. 23, ed. by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York, 1969), p. 1Google Scholar
  21. 21.
    N.D. Mermin, J. Math. Phys. 7, 1038 (1966)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Kröger, Rep. Prog. Phys. 69, 899 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    H. Arai, N. Ueno, T. Fujikawa, XAFS13, ed. by E. Hedman, P. Pianetta. AIP Conference Proceedings, vol. CP882, p. 108 (American Institute of Physics, Melville, 2007)Google Scholar
  24. 24.
    T. Cuk, D.H. Lu, X.-J. Zhou, X.-J. Shen, T.P. Devereaux, N. Nagaosa, Phys. Status Solidi (b) 242, 11 (2005)Google Scholar
  25. 25.
    T. Fujikawa, H. Arai, J. Electron Spect. Relat. Phenom. 174, 85 (2009)CrossRefGoogle Scholar
  26. 26.
    J. Igarashi, K. Hirai, Phys. Rev. B 54, 17820 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, J. Phys. Condens. Matter 22, 185501 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    T. Fujikawa, J. Phys. Soc. Jpn. 50, 1321 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    M. Shang, M. Nagaosa, S. Nagamatsu, S. Hosoumi, S. Kera, T. Fujikawa, N. Ueno, J. Electron Spect. Relat. Phenom. 184, 261 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Sekiyama, S. Suga, Physica B 312–313, 634 (2002)CrossRefGoogle Scholar
  31. 31.
    A. Sekiyama, S. Suga, J. Electron Spect. Relat. Phenom. 137–140, 681 (2004)CrossRefGoogle Scholar
  32. 32.
    M.O. Krause, Phys. Rev. 177, 151 (1969)ADSCrossRefGoogle Scholar
  33. 33.
    O. Hemmers, R. Guillemin, D.W. Lindle, Rad. Phys. Chem. 70, 123 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Cooper, Phys. Rev. A 47, 184 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    T. Fujikawa, R. Suzuki, H. Arai, H. Shinotsuka, L. Kövér, J. Electron Spect. Relat. Phenom. 159, 14 (2007)CrossRefGoogle Scholar
  36. 36.
    U. Gelius, K. Siegbahn, J. Chem. Soc. Faraday Discussion 54, 257 (1972)CrossRefGoogle Scholar
  37. 37.
    R. Suzuki, H. Arai, H. Shinotsuka, T. Fujikawa, e-J. Surf. Sci. Nanotech. 3, 373 (2005)Google Scholar
  38. 38.
    T. Fujikawa, R. Suzuki, L. Kövér, J. Electron Spect. Relat. Phenom. 151, 170 (2006)CrossRefGoogle Scholar
  39. 39.
    T. Fujikawa, H. Arai, R. Suzuki, H. Shinotsuka, L. Kövér, N. Ueno, J. Electron Spect. Relat. Phenom. 162, 146 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Suga, S. Itoda, A. Sekiyama, H. Fujiwara, S. Komori, S. Imada, M. Yabashi, K. Tamasaka, A. Higashiyama, T. Ishikawa, M. Shang, T. Fujikawa, Phys. Rev. B86, 035146 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    M. Shang, T. Fujikawa, N. Ueno, e-J. Surf. Sci. Nanotech. 10, 128 (2012)Google Scholar
  42. 42.
    M. Shang, T. Fujikawa, N. Ueno, Anal. Chem. 85, 3739 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Graduate School of Advanced Integration ScienceChiba UniversityChibaJapan

Personalised recommendations