Amebiasis pp 137-149 | Cite as

Small RNAs and Regulation of Gene Expression in Entamoeba histolytica

  • Laura Morf
  • Upinder Singh


Entamoeba histolytica harbors a variety of small RNA populations as well as homologues of proteins of the RNA interference (RNAi) pathway, suggesting the presence of a functional RNAi pathway in this unicellular eukaryote. Additionally, several attempts in adapting RNAi-based gene-silencing techniques in E. histolytica were successful, proving that a functional RNAi pathway is indeed present in this protozoan parasite. The most abundant small RNA population has a 5′-polyphosphate structure indicating a Dicer-independent biogenesis pathway. Bioinformatic and functional analyses of small RNAs highlights a role in gene silencing, which contributes to strain-specific gene expression patterns. However, whether the small RNAs have regulatory roles contributing to gene expression changes during tissue invasion or developmental changes is not known. Furthermore, the exact mechanism by which the small RNAs mediate gene expression regulation is also not known. In this chapter we give an overview on the known elements of the Entamoeba RNAi pathway, the characteristics of the small RNA populations, and summarize the insights we have gained from studying gene expression regulation by small RNAs.


Gene Silence Small RNAs Entamoeba Histolytica RNAi Pathway Histolytica Trophozoite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ecker JR, Davis RW (1986) Inhibition of gene expression in plant cells by expression of antisense RNA. Proc Natl Acad Sci USA 83:5372–5376PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95:14687–14692PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Ullu E, Tschudi C, Chakraborty T (2004) RNA interference in protozoan parasites. Cell Microbiol 6:509–519PubMedCrossRefGoogle Scholar
  5. 5.
    Braun L, Cannella D, Ortet P, Barakat M, Sautel CF et al (2010) A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. PLoS Pathog 6:e1000920PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Rathjen T, Nicol C, McConkey G, Dalmay T (2006) Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 580:5185–5188PubMedCrossRefGoogle Scholar
  7. 7.
    Xue X, Zhang Q, Huang Y, Feng L, Pan W (2008) No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection. Malar J 7:47PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gong AY, Zhou R, Hu G, Liu J, Sosnowska D et al (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201:160–169PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Zeiner GM, Norman KL, Thomson JM, Hammond SM, Boothroyd JC (2010) Toxoplasma gondii infection specifically increases the levels of key host microRNAs. PLoS One 5:e8742PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sijen T, Steiner FA, Thijssen KL, Plasterk RH (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315:244–247PubMedCrossRefGoogle Scholar
  11. 11.
    Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315:241–244PubMedCrossRefGoogle Scholar
  12. 12.
    Pak J, Maniar JM, Mello CC, Fire A (2012) Protection from feed-forward amplification in an amplified RNAi mechanism. Cell 151:885–899PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U (2008) Small RNAs with 5′-polyphosphate termini associate with a Piwi-related protein and regulate gene expression in the single-celled eukaryote Entamoeba histolytica. PLoS Pathog 4:e1000219PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437PubMedCrossRefGoogle Scholar
  15. 15.
    Cenik ES, Zamore PD (2011) Argonaute proteins. Curr Biol 21:R446–R449PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang H, Pompey JM, Singh U (2011) RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing. Future Microbiol 6:103–117PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zhang H, Alramini H, Tran V, Singh U (2011) Nucleus-localized antisense small RNAs with 5′-polyphosphate termini regulate long term transcriptional gene silencing in Entamoeba histolytica G3 strain. J Biol Chem 286:44467–44479PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol 17:138–145PubMedCrossRefGoogle Scholar
  19. 19.
    Shi H, Tschudi C, Ullu E (2006) An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA 12:2063–2072PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Patrick KL, Shi H, Kolev NG, Ersfeld K, Tschudi C et al (2009) Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc Natl Acad Sci USA 106:17933–17938PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH et al (2009) RNAi in budding yeast. Science 326:544–550PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wang J, Czech B, Crunk A, Wallace A, Mitreva M et al (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21:1462–1477PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ et al (2009) Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36:231–244PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Maida Y, Masutomi K (2011) RNA-dependent RNA polymerases in RNA silencing. Biol Chem 392:299–304PubMedCrossRefGoogle Scholar
  25. 25.
    De S, Pal D, Ghosh SK (2006) Entamoeba histolytica: computational identification of putative microRNA candidates. Exp Parasitol 113:239–243PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang H, Ehrenkaufer GM, Hall N, Singh U (2013) Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics 14:53PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350PubMedCrossRefGoogle Scholar
  28. 28.
    Djupedal I, Kos-Braun IC, Mosher RA, Soderholm N, Simmer F et al (2009) Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA. EMBO J 28:3832–3844PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Morf L, Pearson RJ, Wang AS, Singh U (2013) Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica. Nucleic Acids Res 41:9424–9437PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kaur G, Lohia A (2004) Inhibition of gene expression with double strand RNA interference in Entamoeba histolytica. Biochem Biophys Res Commun 320:1118–1122PubMedCrossRefGoogle Scholar
  31. 31.
    Linford AS, Moreno H, Good KR, Zhang H, Singh U et al (2009) Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica. BMC Microbiol 9:38PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    MacFarlane RC, Singh U (2007) Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity. Eukaryot Cell 6:2139–2146PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Solis CF, Santi-Rocca J, Perdomo D, Weber C, Guillen N (2009) Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression. PLoS One 4:e8424PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature (Lond) 391:806–811CrossRefGoogle Scholar
  35. 35.
    Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026PubMedCrossRefGoogle Scholar
  36. 36.
    Dastidar PG, Majumder S, Lohia A (2007) Eh Klp5 is a divergent member of the kinesin 5 family that regulates genome content and microtubular assembly in Entamoeba histolytica. Cell Microbiol 9:316–328PubMedCrossRefGoogle Scholar
  37. 37.
    Dastidar PG, Lohia A (2008) Bipolar spindle frequency and genome content are inversely regulated by the activity of two N-type kinesins in Entamoeba histolytica. Cell Microbiol 10:1559–1571PubMedCrossRefGoogle Scholar
  38. 38.
    Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Siolas D, Lerner C, Burchard J, Ge W, Linsley PS et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231PubMedCrossRefGoogle Scholar
  40. 40.
    Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553PubMedCrossRefGoogle Scholar
  41. 41.
    Solis CF, Guillen N (2008) Silencing genes by RNA interference in the protozoan parasite Entamoeba histolytica. Methods Mol Biol 442:113–128PubMedCrossRefGoogle Scholar
  42. 42.
    Mirelman D, Anbar M, Bracha R (2008) Epigenetic transcriptional gene silencing in Entamoeba histolytica. IUBMB Life 60:598–604PubMedCrossRefGoogle Scholar
  43. 43.
    Huguenin M, Bracha R, Chookajorn T, Mirelman D (2010) Epigenetic transcriptional gene silencing in Entamoeba histolytica: insight into histone and chromatin modifications. Parasitology 137:619–627PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of Internal MedicineStanford University School of MedicineStanfordUSA
  2. 2.Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUSA

Personalised recommendations