Amebiasis pp 99-117 | Cite as

Surveying Entamoeba histolytica Transcriptome Using Massively Parallel cDNA Sequencing

  • Chung-Chau Hon
  • Christian Weber
  • Mikael Koutero
  • Marc Deloger
  • Jean-Yves Coppee
  • Nancy Guillen


Massively parallel cDNA sequencing, known as RNA-Seq, is a recently developed approach to interrogate transcriptomes. Its rapid and ongoing development promises to revolutionize transcriptomics over the next decade. In this chapter, we first review the transcriptome research of Entamoeba histolytica during the past 25 years in retrospect: from cDNA library screening in the 1980s to the latest RNA-Seq analyses. Then, we share our experiences on applying RNA-Seq to the Entamoeba transcriptome, aiming to provide useful caveats and tips. Next, we summarize the results of our latest RNA-Seq analyses of E. histolytica, including identification of unannotated transcripts, revision of existing gene models, reconstruction of alternative isoforms, and quantification of stochastic noise in splicing and polyadenylation. Finally, we outline a number of advanced applications of RNA-Seq that could potentially be applied to E. histolytica, hoping to shed light on the future directions of Entamoeba transcriptomics.


Sequencing Depth Code Transcript Predict Gene Model Natural Antisense Transcript Noncoding Transcript 


  1. 1.
    Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88:243–251PubMedCrossRefGoogle Scholar
  2. 2.
    Okayama H, Kawaichi M, Brownstein M, Lee F, Yokota T, Arai K (1987) High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol 154:3–28PubMedCrossRefGoogle Scholar
  3. 3.
    Deloukas P, Schuler GD, Gyapay G, Beasley EM, Soderlund C, Rodriguez-Tomé P, Hui L, Matise TC, McKusick KB, Beckmann JS et al (1998) A physical map of 30,000 human genes. Science 282:744–746PubMedCrossRefGoogle Scholar
  4. 4.
    Edman U, Meza I, Agabian N (1987) Genomic and cDNA actin sequences from a virulent strain of Entamoeba histolytica. Proc Natl Acad Sci USA 84:3024–3028PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Huber M, Garfinkel L, Gitler C, Mirelman D, Revel M, Rozenblatt S (1987) Entamoeba histolytica: cloning and characterization of actin cDNA. Mol Biochem Parasitol 24:227–235PubMedCrossRefGoogle Scholar
  6. 6.
    Tannich E, Ebert F, Horstmann RD (1991) Primary structure of the 170-kDa surface lectin of pathogenic Entamoeba histolytica. Proc Natl Acad Sci USA 88:1849–1853PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    De Meester F, Bracha R, Huber M, Keren Z, Rozenblatt S, Mirelman D (1991) Cloning and characterization of an unusual elongation factor-1 alpha cDNA from Entamoeba histolytica. Mol Biochem Parasitol 44:23–32PubMedCrossRefGoogle Scholar
  8. 8.
    Huber M, Garfinkel L, Gitler C, Mirelman D, Revel M, Rozenblatt S (1988) Nucleotide sequence analysis of an Entamoeba histolytica ferredoxin gene. Mol Biochem Parasitol 31:27–33PubMedCrossRefGoogle Scholar
  9. 9.
    Leippe M, Tannich E, Nickel R, van der Goot G, Pattus F, Horstmann RD, Müller-Eberhard HJ (1992) Primary and secondary structure of the pore-forming peptide of pathogenic Entamoeba histolytica. EMBO J 11:3501–3506PubMedCentralPubMedGoogle Scholar
  10. 10.
    Wang SM (2008) Long-short-long games in mRNA identification: the length matters. Curr Pharm Biotechnol 9:362–367PubMedCrossRefGoogle Scholar
  11. 11.
    Tanaka T, Tanaka M, Mitsui Y (1997) Analysis of expressed sequence tags (ESTs) of the parasitic protozoa Entamoeba histolytica. Biochem Biophys Res Commun 236:611–615PubMedCrossRefGoogle Scholar
  12. 12.
    Willhoeft U, Buss H, Tannich E (1999) Analysis of cDNA expressed sequence tags from Entamoeba histolytica: identification of two highly abundant polyadenylated transcripts with no overt open reading frames. Protist 150:61–70PubMedCrossRefGoogle Scholar
  13. 13.
    Azam A, Paul J, Sehgal D, Prasad J, Bhattacharya S, Bhattacharya A (1996) Identification of novel genes from Entamoeba histolytica by expressed sequence tag analysis. Gene (Amst) 181:113–116CrossRefGoogle Scholar
  14. 14.
    Sharma R, Azam A, Bhattacharya S, Bhattacharya A (1999) Identification of novel genes of non-pathogenic Entamoeba dispar by expressed sequence tag analysis. Mol Biochem Parasitol 99:279–285PubMedCrossRefGoogle Scholar
  15. 15.
    Van Dellen K, Field J, Wang Z, Loftus B, Samuelson J (2002) LINEs and SINE-like elements of the protist Entamoeba histolytica. Gene (Amst) 297:229–239CrossRefGoogle Scholar
  16. 16.
    Willhoeft U, Buss H, Tannich E (2002) The abundant polyadenylated transcript 2 DNA sequence of the pathogenic protozoan parasite Entamoeba histolytica represents a nonautonomous non-long-terminal-repeat retrotransposon-like element which is absent in the closely related nonpathogenic species Entamoeba dispar. Infect Immun 70:6798–6804PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bhattacharya A, Bhattacharya S, Ackers JP (2003) Nontranslated polyadenylated RNAs from Entamoeba histolytica. Trends Parasitol 19:286–289PubMedCrossRefGoogle Scholar
  18. 18.
    Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV (2010) New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 4:e716PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature (Lond) 433:865–868CrossRefGoogle Scholar
  20. 20.
    Davis CA, Brown MPS, Singh U (2007) Functional characterization of spliceosomal introns and identification of U2, U4, and U5 snRNAs in the deep-branching eukaryote Entamoeba histolytica. Eukaryot Cell 6:940–948PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Zamorano A, López-Camarillo C, Orozco E, Weber C, Guillen N, Marchat LA (2008) In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Comput Biol Chem 32:256–263PubMedCrossRefGoogle Scholar
  22. 22.
    Bakre AA, Rawal K, Ramaswamy R, Bhattacharya A, Bhattacharya S (2005) The LINEs and SINEs of Entamoeba histolytica: comparative analysis and genomic distribution. Exp Parasitol 110:207–213PubMedCrossRefGoogle Scholar
  23. 23.
    Lorenzi H, Thiagarajan M, Haas B, Wortman J, Hall N, Caler E (2008) Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics 9:595PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Huntley DM, Pandis I, Butcher SA, Ackers JP (2010) Bioinformatic analysis of Entamoeba histolytica SINE1 elements. BMC Genomics 11:321PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Gilchrist CA, Petri WA (2009) Using differential gene expression to study Entamoeba histolytica pathogenesis. Trends Parasitol 25:124–131PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    MacFarlane RC, Shah PH, Singh U (2005) Transcriptional profiling of Entamoeba histolytica trophozoites. Int J Parasitol 35:533–542PubMedCrossRefGoogle Scholar
  27. 27.
    Gilchrist CA, Houpt E, Trapaidze N, Fei Z, Crasta O, Asgharpour A, Evans C, Martino-Catt S, Baba DJ, Stroup S et al (2006) Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147:163–176PubMedCrossRefGoogle Scholar
  28. 28.
    Hackney JA, Ehrenkaufer GM, Singh U (2007) Identification of putative transcriptional regulatory networks in Entamoeba histolytica using Bayesian inference. Nucleic Acids Res 35:2141–2152PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Weber C, Guigon G, Bouchier C, Frangeul L, Moreira S, Sismeiro O, Gouyette C, Mirelman D, Coppée J-Y, Guillen N (2006) Stress by heat shock induces massive down regulation of genes and allows differential allelic expression of the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell 5:871–875PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Santi-Rocca J, Smith S, Weber C, Pineda E, Hon C-C, Saavedra E, Olivos-García A, Rousseau S, Dillies M-A, Coppée J-Y et al (2012) Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS One 7:e31777PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Baumel-Alterzon S, Weber C, Guillen N, Ankri S (2013) Identification of dihydropyrimidine dehydrogenase as a virulence factor essential for the survival of Entamoeba histolytica in glucose-poor environments. Cell Microbiol 15:130–144PubMedCrossRefGoogle Scholar
  32. 32.
    Husain A, Jeelani G, Sato D, Nozaki T (2011) Global analysis of gene expression in response to l-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. BMC Genomics 12:275PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Singh U, Ehrenkaufer GM (2009) Recent insights into Entamoeba development: identification of transcriptional networks associated with stage conversion. Int J Parasitol 39:41–47PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Santi-Rocca J, Weber C, Guigon G, Sismeiro O, Coppée J-Y, Guillen N (2008) The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis. Cell Microbiol 10:202–217PubMedGoogle Scholar
  35. 35.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bosch DE, Kimple AJ, Muller RE, Giguère PM, Machius M, Willard FS, Temple BRS, Siderovski DP (2012) Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica. PLoS Pathog 8:e1003040PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hon C-C, Weber C, Sismeiro O, Proux C, Koutero M, Deloger M, Das S, Agrahari M, Dillies M-A, Jagla B et al (2012) Quantification of stochastic noise of splicing and polyadenylation in Entamoeba histolytica. Nucleic Acids Res. doi: 10.1093/nar/gks1271 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Cloonan N, Grimmond SM (2008) Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol 9:234PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedCrossRefGoogle Scholar
  40. 40.
    Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J et al (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 108:2124–2129PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Trapnell C, Salzberg SL (2009) How to map billions of short reads onto genomes. Nat Biotechnol 27:455–457PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Paszkiewicz K, Studholme DJ (2010) De novo assembly of short sequence reads. Brief Bioinform 11:457–472PubMedCrossRefGoogle Scholar
  43. 43.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  44. 44.
    Hu M, Zhu Y, Taylor JMG, Liu JS, Qin ZS (2012) Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq. Bioinformatics 28:63–68PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285PubMedCrossRefGoogle Scholar
  46. 46.
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Böhme U, Lemieux J, Barrell B, Pain A, Berriman M et al (2010) New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol 76:12–24PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z, Chen F, Lindquist EA, Sorek R et al (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods. doi: 10.1038/nmeth.1507 PubMedGoogle Scholar
  49. 49.
    Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Goodman AJ, Daugharthy ER, Kim J (2012) Pervasive antisense transcription is evolutionarily conserved in budding yeast. Mol Biol Evol. doi: 10.1093/molbev/mss240 PubMedGoogle Scholar
  51. 51.
    Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson D-A, Friedman N, Gnirke A, Regev A (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Blencowe BJ, Ahmad S, Lee LJ (2009) Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev 23:1379–1386PubMedCrossRefGoogle Scholar
  53. 53.
    Haas BJ, Chin M, Nusbaum C, Birren BW, Livny J (2012) How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13:734PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Loftus BJ, Hall N (2005) Entamoeba: still more to be learned from the genome. Trends Parasitol 21:453PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang H, Ehrenkaufer GM, Hall N, Singh U (2013) Small RNA pyrosequencing in the protozoan parasite Entamoeba histolytica reveals strain-specific small RNAs that target virulence genes. BMC Genomics 14:53PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Roy SW, Penny D (2007) Intron length distributions and gene prediction. Nucleic Acids Res 35:4737–4742PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415PubMedCrossRefGoogle Scholar
  58. 58.
    Pickrell JK, Pai AA, Gilad Y, Pritchard JK (2010) Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet 6:e1001236PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Melamud E, Moult J (2009) Stochastic noise in splicing machinery. Nucleic Acids Res 37:4873–4886PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71PubMedCrossRefGoogle Scholar
  61. 61.
    Kapranov P (2009) From transcription start site to cell biology. Genome Biol 10:217PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci USA 100:15776–15781PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    FANTOM Consortium, Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, Lassmann T, Ravasi T, Hasegawa Y et al (2009) The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41:553–562PubMedCrossRefGoogle Scholar
  64. 64.
    Gowda M, Li H, Alessi J, Chen F, Pratt R, Wang G-L (2006) Robust analysis of 5′-transcript ends (5′-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res 34:e126PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S, Vogel J, Stadler PF, Bonas U (2012) Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res 40:2020–2031PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, Rohl CA, Johnson JM, Babak T (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res. doi: 10.1101/gr.132563.111 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Shepard PJ, Choi E-A, Lu J, Flanagan LA, Hertel KJ, Shi Y (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761–772PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Lee JY, Park JY, Tian B (2008) Identification of mRNA polyadenylation sites in genomes using cDNA sequences, expressed sequence tags, and Trace. Methods Mol Biol 419:23–37PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U (2008) Small RNAs with 5′-polyphosphate termini associate with a Piwi-related protein and regulate gene expression in the single-celled eukaryote Entamoeba histolytica. PLoS Pathog 4:e1000219PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Lasa I, Toledo-Arana A, Dobin A, Villanueva M, de los Mozos IR, Vergara-Irigaray M, Segura V, Fagegaltier D, Penadés JR, Valle J et al (2011) Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci USA 108:20172–20177PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature (Lond) 460:479–486Google Scholar
  72. 72.
    Saulière J, Murigneux V, Wang Z, Marquenet E, Barbosa I, Le Tonquèze O, Audic Y, Paillard L, Roest Crollius H, Le Hir H (2012) CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol 19:1124–1131PubMedCrossRefGoogle Scholar
  73. 73.
    Yeo GW, Coufal NG, Liang TY, Peng GE, Fu X-D, Gage FH (2009) An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol 16:130–137PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382PubMedCrossRefGoogle Scholar
  75. 75.
    Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618–630PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Chung-Chau Hon
    • 1
    • 2
  • Christian Weber
    • 1
    • 2
  • Mikael Koutero
    • 3
  • Marc Deloger
    • 1
    • 2
  • Jean-Yves Coppee
    • 3
  • Nancy Guillen
    • 1
    • 2
  1. 1.Institut PasteurCell Biology of Parasitism UnitParisFrance
  2. 2.Inserm U786ParisFrance
  3. 3.Institut Pasteur, Genopole, Platforme of Transcriptome and EpigenomeParisFrance

Personalised recommendations