Amebiasis pp 75-95 | Cite as

Genetic Manipulation Techniques

  • David Mirelman
  • Rivka Bracha


In the past two decades we have seen a very important advance in the research of the biology of Entamoeba histolytica. This dramatic progress has been mostly the result of (1) the introduction of a transfection system to express exogenous genes and to up- and downregulate the expression of selected genes, (2) the completion of the parasite’s genome sequencing, including the genomes of various Entamoeba spp. and some of its strains, and (3) the development of microarrays both for genomic and for transcriptional profiling. The introduction of these molecular tools has significantly expanded our ability to investigate many important questions such as the role and molecular mechanisms of different virulence factors, transport, and metabolic systems, as well in the cell cycle and differentiation of the parasite. In addition, it enabled the better understanding of the molecular differences among the various Entamoeba species and strains. Nevertheless, there are still many open questions that need to be answered.


Liver Abscess Peptide Nucleic Acid Antisense Transcript Entamoeba Histolytica Transcriptional Gene Silence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Weedall GD, Clark CG, Koldkjaer P, Kay S, Bruchhaus I et al (2012) Genomic diversity of the human intestinal parasite Entamoeba histolytica. Genome Biol 13:R38PubMedCentralPubMedGoogle Scholar
  2. 2.
    Gilchrist CA, Ali IK, Kabir M, Alam F, Scherbakova S et al (2012) A multilocus sequence typing system (MLST) reveals a high level of diversity and a genetic component to Entamoeba histolytica virulence. BMC Microbiol 12:151–165PubMedCentralPubMedGoogle Scholar
  3. 3.
    Davis PH, Schulze J, Stanley SL Jr (2007) Transcriptomic comparison of two Entamoeba histolytica strains with defined virulence phenotypes identifies new virulence factor candidates and key differences in the expression patterns of cysteine proteases, lectin light chains, and calmodulin. Mol Biochem Parasitol 151:118–128PubMedGoogle Scholar
  4. 4.
    MacFarlane RC, Singh U (2006) Identification of differentially expressed genes in virulent and nonvirulent Entamoeba species: potential implications for amebic pathogenesis. Infect Immun 74:340–351PubMedCentralPubMedGoogle Scholar
  5. 5.
    Ebert F, Bachmann A, Nakada-Tsukui K, Hennings I, Drescher B et al (2008) An Entamoeba cysteine peptidase specifically expressed during encystation. Parasitol Int 57:521–524PubMedGoogle Scholar
  6. 6.
    Gilchrist CA, Petri WA Jr (2009) Using differential gene expression to study Entamoeba histolytica pathogenesis. Trends Parasitol 25:124–131PubMedCentralPubMedGoogle Scholar
  7. 7.
    Biller L, Davis PH, Tillack M, Matthiesen J, Lotter H et al (2010) Differences in the transcriptome signatures of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. BMC Genomics 11:63PubMedCentralPubMedGoogle Scholar
  8. 8.
    MacFarlane RC, Singh U (2007) Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity. Eukaryot Cell 6:2139–2146PubMedCentralPubMedGoogle Scholar
  9. 9.
    Biller L, Schmidt H, Krause E, Gelhaus C, Matthiesen J et al (2009) Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. Proteomics 9:4107–4120PubMedGoogle Scholar
  10. 10.
    Ghosh SK, Van Dellen KL, Chatterjee A, Dey T, Haque R et al (2010) The Jacob2 lectin of the Entamoeba histolytica cyst wall binds chitin and is polymorphic. PLoS Negl Trop Dis 4:e750PubMedCentralPubMedGoogle Scholar
  11. 11.
    Jeelani G, Sato D, Husain A, Escueta-de Cadiz A, Sugimoto M et al (2012) Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation. PLoS One 7:e37740PubMedCentralPubMedGoogle Scholar
  12. 12.
    López-Casamichana M, Orozco E, Marchat LA, López-Camarillo C (2008) Transcriptional profile of the homologous recombination machinery and characterization of the EhRAD51 recombinase in response to DNA damage in Entamoeba histolytica. BMC Mol Biol 9:35PubMedCentralPubMedGoogle Scholar
  13. 13.
    Yadav VP, Mandal PK, Bhattacharya A, Bhattacharya S (2012) Recombinant SINEs are formed at high frequency during induced retrotransposition in vivo. Nat Commun 3:854PubMedGoogle Scholar
  14. 14.
    Yadav VP, Mandal PK, Rao DN, Bhattacharya S (2009) Characterization of the restriction enzyme-like endonuclease encoded by the Entamoeba histolytica non-long terminal repeat retrotransposon EhLINE1. FEBS J 276:7070–7082PubMedGoogle Scholar
  15. 15.
    Nickel R, Tannich E (1994) Transfection and transient expression of chloroamphenicol acetyl transferase gene in the protozoan parasite Entamoeba histolytica. Proc Natl Acad Sci USA 91:7095–7098PubMedCentralPubMedGoogle Scholar
  16. 16.
    Purdy JE, Mann BJ, Pho LT, Petri WAJ (1994) Transient transfection of the enteric parasite Entamoeba histolytica and expression of firefly luciferase. Proc Natl Acad Sci USA 91:7099–7103PubMedCentralPubMedGoogle Scholar
  17. 17.
    Hamann L, Nickel R, Tannich E (1995) Transfection and continuous expression of heterologous genes in the protozoan parasite Entamoeba histolytica. Proc Natl Acad Sci USA 92:8975–8979PubMedCentralPubMedGoogle Scholar
  18. 18.
    Vines RR, Purdy JE, Ragland BD, Samuelson J, Mann B et al (1995) Stable episomal transfection of Entamoeba histolytica. Mol Biochem Parasitol 71:265–267PubMedGoogle Scholar
  19. 19.
    Ramakrishnan G, Rogers J, Mann BJ, Petri WA Jr (2001) New tools for genetic analysis of Entamoeba histolytica: blasticidin S deaminase and green fluorescence protein. Parasitol Int 50:47–50PubMedGoogle Scholar
  20. 20.
    Abhyankar MM, Hochreiter AE, Connel SK, Gilchrist CA, Mann BJ et al (2009) Development of the GatewayR System for cloning and expressing genes in Entamoeba histolytica. Parasitol Int 58:95–97PubMedCentralPubMedGoogle Scholar
  21. 21.
    Schaenman JM, Gilchrist CA, Mann BJ, Petri WA Jr (2001) Identification of two Entamoeba histolytica sequence-specific URE4 enhancer-binding proteins with homology to the RNA-binding motif RRM. J Biol Chem 276:1602–1609PubMedGoogle Scholar
  22. 22.
    Gilchrist CA, Baba DJ, Zhang Y, Crasta O, Evans C et al (2008) Targets of the Entamoeba histolytica transcription factor URE3-BP. PLoS Negl Trop Dis 2:e282PubMedCentralPubMedGoogle Scholar
  23. 23.
    Nozaki T, Asai T, Sanchez LB, Kobayashi S, Nakazawa M et al (1999) Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar: regulation and possible function of the cysteine biosynthetic pathway. J Biol Chem 274:32445–32452PubMedGoogle Scholar
  24. 24.
    Singh N, Ojha S, Bhattacharya A, Bhattacharya S (2012) Establishment of a transient transfection system and expression of firefly luciferase in Entamoeba invadens. Mol Biochem Parasitol 183:90–93PubMedGoogle Scholar
  25. 25.
    Ehrenkaufer GM, Singh U (2012) Transient and stable transfection in the protozoan parasite Entamoeba invadens. Mol Biochem Parasitol 184:59–62PubMedCentralPubMedGoogle Scholar
  26. 26.
    Bracha R, Nuchamowitz Y, Mirelman D (2002) Amoebapore is an important virulence factor of Entamoeba histolytica. J Biosci (Bangalore) 27:579–589Google Scholar
  27. 27.
    Hellberg A, Nickel R, Lotter H, Tannich E, Bruchhaus I (2001) Overexpression of cysteine proteinase 2 in Entamoeba histolytica or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils. Cell Microbiol 3:13–20PubMedGoogle Scholar
  28. 28.
    Coudrier E, Amblard F, Zimmer C, Roux P, Olivo-Marin JC et al (2005) Myosin II and the Gal-GalNAc lectin play a crucial role in tissue invasion by Entamoeba histolytica. Cell Microbiol 7:19–27PubMedGoogle Scholar
  29. 29.
    Tavares P, Rigothier MC, Khun H, Roux P, Huerre M et al (2005) Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance. Infect Immun 73:1771–1778PubMedCentralPubMedGoogle Scholar
  30. 30.
    Marion S, Wilhelm C, Voigt H, Bacri JC, Guillén N (2004) Overexpression of myosin IB in living Entamoeba histolytica enhances cytoplasm viscosity and reduces phagocytosis. J Cell Sci 117:3271–3279PubMedGoogle Scholar
  31. 31.
    Wassmann C, Hellberg A, Tannich E, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274:26051–26056PubMedGoogle Scholar
  32. 32.
    Rastew E, Vicente JB, Singh U (2012) Oxidative stress resistance genes contribute to the pathogenic potential of the anaerobic protozoan parasite, Entamoeba histolytica. Int J Parasitol 42:1007–1015PubMedCentralPubMedGoogle Scholar
  33. 33.
    Vines RR, Ramakrishnan G, Rogers JB, Lockhart LA, Mann BJ et al (1998) Regulation of adherence and virulence by the Entamoeba histolytica lectin cytoplasmic domain, which contains a beta2 integrin motif. Mol Biol Cell 9:2069–2079PubMedCentralPubMedGoogle Scholar
  34. 34.
    Byekova YA, Powell RR, Welter BH, Temesvari LA (2010) Localization of phosphatidylinositol (3,4,5)-trisphosphate to phagosomes in Entamoeba histolytica achieved using glutathione S-transferase- and green fluorescent protein-tagged lipid biosensors. Infect Immun 78:125PubMedCentralPubMedGoogle Scholar
  35. 35.
    Jain R, Santi-Rocca J, Padhan N, Bhattacharya S, Guillen N et al (2008) Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell Microbiol 10:1373–1389PubMedGoogle Scholar
  36. 36.
    Nakada-Tsukui K, Okada H, Mitra BN, Nozaki T (2009) Phosphatidylinositol-phosphates mediate cytoskeletal reorganization during phagocytosis via a unique modular protein consisting of RhoGEF/DH and FYVE domains in the parasitic protozoon Entamoeba histolytica. Cell Microbiol 11:1471–1491PubMedGoogle Scholar
  37. 37.
    Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci USA 106:21731–21736PubMedCentralPubMedGoogle Scholar
  38. 38.
    King AV, Welter BH, Koushik AB, Gordon LN, Temesvari LA (2012) A genome-wide over-expression screen identifies genes involved in phagocytosis in the human protozoan parasite, Entamoeba histolytica. PLoS One 7:e43025PubMedCentralPubMedGoogle Scholar
  39. 39.
    Wender N, Villalobo E, Mirelman D (2007) EhLimA, a novel LIM protein, localizes to the plasma membrane in Entamoeba histolytica. Eukaryot Cell 6:1646–1655PubMedCentralPubMedGoogle Scholar
  40. 40.
    Hamann L, Buss H, Tannich E (1997) Tetracycline-controlled gene expression in Entamoeba histolytica. Mol Biochem Parasitol 84:83–91PubMedGoogle Scholar
  41. 41.
    Ramakrishnan G, Vines RR, Mann BJ, Petri WA Jr (1997) A tetracycline-inducible gene expression system in Entamoeba histolytica. Mol Biochem Parasitol 84:93–100PubMedGoogle Scholar
  42. 42.
    Petter R, Moshitch S, Rozenblatt S, Nuchamowitz Y, Mirelman D (1994) Characterization of two distinct gene transcripts for ribosomal protein L21 from pathogenic and nonpathogenic strains of Entamoeba histolytica. Gene (Amst) 150:181–186Google Scholar
  43. 43.
    Moshitch-Moshkovitch S, Petter R, Levitan A, Stolarsky T, Mirelman D (1998) Regulation of expression of ribosomal protein L-21 genes of Entamoeba histolytica and E. dispar is at the post-transcriptional level. Mol Microbiol 27:677–685PubMedGoogle Scholar
  44. 44.
    Ankri S, Stolarsky T, Bracha R, Padilla-Vaca F, Mirelman D (1999) Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. Infect Immun 67:421–422PubMedCentralPubMedGoogle Scholar
  45. 45.
    Ankri S, Stolarsky T, Mirelman D (1998) Antisense inhibition of expression of cysteine proteinases in Entamoeba histolytica does not affect cytopathic or hemolytic activity but inhibits phagocytosis. Mol Microbiol 28:777–785PubMedGoogle Scholar
  46. 46.
    Ankri S, Padilla-Vaca F, Stolarsky T, Koole L, Katz U et al (1999) Antisense inhibition of expression of the light subunit (35 kDa) of the Gal/GalNac lectin complex inhibits Entamoeba histolytica virulence. Mol Microbiol 33:327–337PubMedGoogle Scholar
  47. 47.
    Bracha R, Nuchamowitz Y, Leippe M, Mirelman D (1999) Antisense inhibition of amoebapore expression in Entamoeba histolytica causes a decrease in amoebic virulence. Mol Microbiol 34:463–472PubMedGoogle Scholar
  48. 48.
    Zhang ZL, Wang KB, Seydel E, Li S, Ankri S et al (2000) Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol 37:542–548PubMedGoogle Scholar
  49. 49.
    Moncada D, Keller K, Ankri S, Mirelman D, Chadee K (2006) Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 130:721–730PubMedGoogle Scholar
  50. 50.
    Bracha R, Nuchamowitz Y, Mirelman D (2000) Inhibition of gene expression in Entamoeba by the transcription of antisense RNA: effect of 5′ and 3′ regulatory elements. Mol Biochem Parasitol 107:81–90PubMedGoogle Scholar
  51. 51.
    Alon RN, Bracha R, Mirelman D (1997) Inhibition of expression of the lysine-rich 30 kDa surface antigen of Entamoeba dispar by the transcription of its antisense RNA. Mol Biochem Parasitol 90:193–201PubMedGoogle Scholar
  52. 52.
    Moshitch-Moshkovitch S, Stolarsky T, Mirelman D, Alon RN (1996) Stable episomal transfection and gene expression in Entamoeba dispar. Mol Biochem Parasitol 83:257–261PubMedGoogle Scholar
  53. 53.
    Chen M, Li E, Stanley SLJ (2004) Structural analysis of the acetaldehyde dehydrogenase activity of Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a member of the ADHE enzyme family. Mol Biochem Parasitol 137:201–205PubMedGoogle Scholar
  54. 54.
    Lavi T, Siman-Tov R, Ankri S (2008) EhMLBP is an essential constituent of the Entamoeba histolytica epigenetic machinery and a potential drug target. Mol Microbiol 69:55–66PubMedGoogle Scholar
  55. 55.
    Sahoo N, Labruyère E, Bhattacharya S, Sen P, Guillén N et al (2004) Calcium binding protein 1 of the protozoan parasite Entamoeba histolytica interacts with actin and is involved in cytoskeleton dynamics. J Cell Sci 117:3625–3634PubMedGoogle Scholar
  56. 56.
    Vats D, Vishwakarma RA, Bhattacharya S, Bhattacharya A (2005) Reduction of cell surface glycosylphosphatidylinositol conjugates in Entamoeba histolytica by antisense blocking of E. histolytica GlcNAc-phosphatidylinositol deacetylase expression: effect on cell proliferation, endocytosis, and adhesion to target cells. Infect Immun 73:8381–8392PubMedCentralPubMedGoogle Scholar
  57. 57.
    Weber C, Blazquez S, Marion S, Ausseur C, Vats D et al (2008) Bioinformatics and functional analysis of an Entamoeba histolytica mannosyltransferase necessary for parasite complement resistance and hepatical infection. PLoS Negl Trop Dis 2:e165PubMedCentralPubMedGoogle Scholar
  58. 58.
    Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biochemical applications and promise for the future. FASEB J 14:1041–1060PubMedGoogle Scholar
  59. 59.
    Stock RP, Olvera A, Sánchez R, Saralegui A, Scarfì S et al (2001) Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nat Biotechnol 19:213–215Google Scholar
  60. 60.
    Sánchez R, Saralegui A, Olivos-García A, Scapolla C, Damonte G et al (2005) Entamoeba histolytica: intracellular distribution of the sec61alpha subunit of the secretory pathway and down-regulation by antisense peptide nucleic acids. Exp Parasitol 109:241–251PubMedGoogle Scholar
  61. 61.
    Arhets P, Olivo-Marin JC, Gounon P, Sansonetti P, Guillén N (1998) Virulence and functions of myosin II are inhibited by overexpression of light meromyosin in Entamoeba hystolytica. Mol Biol Cell 8:1537–1547Google Scholar
  62. 62.
    Blazquez S, Rigothier MC, Huerre M, Guillen N (2007) Initiation of inflammation and cell death during liver abscess formation by Entamoeba histolytica depends on activity of the galactose/N-acetyl-d-galactosamine lectin. Int J Parasitol 37:425–433PubMedGoogle Scholar
  63. 63.
    Blazquez S, Guigon G, Weber C, Syan S, Sismeiro O et al (2008) Chemotaxis of Entamoeba histolytica towards the pro-inflammatory cytokine TNF is based on PI3K signalling, cytoskeleton reorganization and the galactose/N-acetylgalactosamine lectin activity. Cell Microbiol 10:1676–1686PubMedGoogle Scholar
  64. 64.
    Katz U, Ankri S, Stolarsky T, Nuchamowitz Y, Mirelman D (2002) Entamoeba histolytica expressing a dominant negative N-truncated light subunit of its gal-lectin are less virulent. Mol Biol Cell 13:4256–4265PubMedCentralPubMedGoogle Scholar
  65. 65.
    Guillén N, Boquet P, Sansonetti P (1998) The small GTP-binding protein RacG regulates uroid formation in the protozoan parasite Entamoeba histolytica. J Cell Sci 111:1729–1739PubMedGoogle Scholar
  66. 66.
    Labruyère E, Zimmer C, Galy V, Olivo-Marin JC, Guillén N (2003) EhPAK, a member of the p21-activated kinase family, is involved in the control of Entamoeba histolytica migration and phagocytosis. J Cell Sci 116:61–71PubMedGoogle Scholar
  67. 67.
    Saito-Nakano Y, Mitra BN, Nakada-Tsukui K, Sato D, Nozaki T (2007) Two Rab7 isotypes, EhRab7A and EhRab7B, play distinct roles in biogenesis of lysosomes and phagosomes in the enteric protozoan parasite Entamoeba histolytica. Cell Microbiol 9:1796–1808PubMedGoogle Scholar
  68. 68.
    Bosch DE, Kimple AJ, Muller RE, Giguère PM, Machius M et al (2012) Heterotrimeric G-protein signaling is critical to pathogenic processes in Entamoeba histolytica. PLoS Pathog 8:e1003040PubMedCentralPubMedGoogle Scholar
  69. 69.
    Katz S, Kushnir O, Tovy A, Siman Tov R, Ankri S (2012) The Entamoeba histolytica methylated LINE-binding protein EhMLBP provides protection against heat shock. Cell Microbiol 14:58–70PubMedGoogle Scholar
  70. 70.
    Vayssie L, Vargas M, Weber C, Guillen N (2004) Double-stranded RNA mediates homology-dependent gene silencing of gamma-tubulin in the human parasite Entamoeba histolytica. Mol Biochem Parasitol 138:21–28PubMedGoogle Scholar
  71. 71.
    Kaur G, Lohia A (2004) Inhibition of gene expression with double strand RNA interference in Entamoeba histolytica. Biochem Biophys Res Commun 320:1118–1122PubMedGoogle Scholar
  72. 72.
    Linford AS, Moreno H, Good KR, Zhang H, Singh U et al (2009) Short hairpin RNA-mediated knockdown of protein expression in Entamoeba histolytica. BMC Microbiol 9:38PubMedCentralPubMedGoogle Scholar
  73. 73.
    Solis CF, Guillén N (2008) Silencing genes by RNA interference in the protozoan parasite Entamoeba histolytica. Methods Mol Biol 442:113–128PubMedGoogle Scholar
  74. 74.
    Solis CF, Santi-Rocca J, Perdomo D, Weber C, Guillén N (2009) Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression. PLoS One 4:e8424PubMedCentralPubMedGoogle Scholar
  75. 75.
    MacFarlane RC, Singh U (2008) Loss of dsRNA-based gene silencing in Entamoeba histolytica: implications for approaches of genetic analysis. Exp Parasitol 119:296–300PubMedCentralPubMedGoogle Scholar
  76. 76.
    Abed M, Ankri S (2005) Molecular characterization of Entamoeba histolytica RNase III and AGO2, two RNA interference hallmark proteins. Exp Parasitol 110:265–269PubMedGoogle Scholar
  77. 77.
    Zhang H, Pompey JM, Singh U (2011) RNA interference in Entamoeba histolytica: implications for parasite biology and gene silencing. Future Microbiol 6:103–117PubMedCentralPubMedGoogle Scholar
  78. 78.
    Morf L, Singh U (2012) Entamoeba histolytica: a snapshot of current research and methods for genetic analysis. Curr Opin Microbiol 15:469–475PubMedCentralPubMedGoogle Scholar
  79. 79.
    Bracha R, Nuchamowitz Y, Mirelman D (2003) Transcriptional silencing of an amoebapore gene in Entamoeba histolytica: molecular analysis and effect on pathogenicity. Eukaryot Cell 2:295–305PubMedCentralPubMedGoogle Scholar
  80. 80.
    Grodberg J, Salazar N, Oren R, Mirelman D (1990) Autonomous replication sequences in an extrachromosomal element of a pathogenic Entamoeba histolytica. Nucleic Acids Res 18:5515–5519PubMedCentralPubMedGoogle Scholar
  81. 81.
    Irmer H, Hennings I, Bruchhaus I, Tannich E (2010) tRNA gene sequences are required for transcriptional silencing in Entamoeba histolytica. Eukaryot Cell 9:306–314PubMedCentralPubMedGoogle Scholar
  82. 82.
    Bracha R, Nuchamowitz Y, Anbar M, Mirelman D (2006) Transcriptional silencing of multiple genes in trophozoites of Entamoeba histolytica. PLoS Pathog 2:e48PubMedCentralPubMedGoogle Scholar
  83. 83.
    Anbar M, Bracha R, Nuchamowitz Y, Li Y, Florentin A, Mirelman D (2005) Involvement of a short interspersed element in epigenetic transcriptional silencing of the amoebapore gene in Entamoeba histolytica. Eukaryot Cell 4:1775–1784PubMedCentralPubMedGoogle Scholar
  84. 84.
    Mirelman D, Anbar M, Bracha R (2008) Trophozoites of Entamoeba histolytica epigenetically silenced in several genes are virulence-attenuated. Parasite 15:266–274PubMedGoogle Scholar
  85. 85.
    Bracha R, Nuchamowitz Y, Wender N, Mirelman D (2007) Transcriptional gene silencing reveals two distinct groups of E. histolytica Gal/GalNAc lectin light subunits. Eukaryot Cell 6:1758–1765PubMedCentralPubMedGoogle Scholar
  86. 86.
    Bansal D, Ave P, Kerneis S, Frileux P, Boché O et al (2009) An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS Negl Trop Dis 3:e551PubMedCentralPubMedGoogle Scholar
  87. 87.
    Thibeaux R, Dufour A, Roux P, Bernier M, Baglin AC et al (2012) Newly visualized fibrillar collagen scaffolds dictate Entamoeba histolytica invasion route in the human colon. Cell Microbiol 14:609–621PubMedGoogle Scholar
  88. 88.
    Irmer H, Tillack M, Biller L, Handal G, Leippe M et al (2009) Major cysteine peptidases of Entamoeba histolytica are required for aggregation and digestion of erythrocytes but are dispensable for phagocytosis and cytopathogenicity. Mol Microbiol 72:658–667PubMedGoogle Scholar
  89. 89.
    Šarić M, Irmer H, Eckert D, Bär AK, Bruchhaus I et al (2012) The cysteine protease inhibitors EhICP1 and EhICP2 perform different tasks in the regulation of endogenous protease activity in trophozoites of Entamoeba histolytica. Protist 163:116–128PubMedGoogle Scholar
  90. 90.
    Baxt LA, Rastew E, Bracha R, Mirelman D, Singh U (2010) Downregulation of an Entamoeba histolytica rhomboid protease reveals roles in regulating parasite adhesion and phagocytosis. Eukaryot Cell 9:1283–1293PubMedCentralPubMedGoogle Scholar
  91. 91.
    Teixeira JE, Sateriale S, Bessoff KE, Huston CD (2012) Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin. Infect Immun 80:2165–2176PubMedCentralPubMedGoogle Scholar
  92. 92.
    Furukawa A, Nakada-Tsukui K, Nozaki T (2012) Novel transmembrane receptor involved in phagosome transport of lysozymes and β-hexosaminidase in the enteric protozoan Entamoeba histolytica. PLoS Pathog 8:e1002539PubMedCentralPubMedGoogle Scholar
  93. 93.
    Nakada-Tsukui K, Tsuboi K, Furukawa A, Yamada Y, Nozaki T (2012) A novel class of cysteine protease receptors that mediate lysosomal transport. Cell Microbiol 14:1299–1317PubMedCentralPubMedGoogle Scholar
  94. 94.
    Penuliar GM, Furukawa A, Sato D, Nozaki T (2011) Mechanism of trifluoromethionine resistance in Entamoeba histolytica. J Antimicrob Chemother 66:2045–2052PubMedGoogle Scholar
  95. 95.
    Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T (2011) Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis 5:e1263PubMedCentralPubMedGoogle Scholar
  96. 96.
    Zhang H, Alramini H, Tran V, Singh U (2011) Nucleus-localized antisense small RNAs with 5′-polyphosphate termini regulate long term transcriptional gene silencing in Entamoeba histolytica G3 strain. J Biol Chem 286:44467–44479PubMedCentralPubMedGoogle Scholar
  97. 97.
    Mirelman D, Anbar M, Bracha R (2008) Epigenetic transcriptional gene silencing in Entamoeba histolytica. IUBMB Life 60:598–604PubMedGoogle Scholar
  98. 98.
    Clark CG, Ali IK, Zaki M, Loftus BJ, Hall N (2006) Unique organisation of tRNA genes in Entamoeba histolytica. Mol Biochem Parasitol 146:24–29PubMedGoogle Scholar
  99. 99.
    Ali IKM, Zaki M, Clark CG (2005) Use of PCR amplification of tRNA gene-linked short tandem repeats for genotyping Entamoeba histolytica. J Clin Microbiol 43:5842–5847PubMedCentralPubMedGoogle Scholar
  100. 100.
    Kumari V, Sharma R, Yadav VP, Gupta AK, Bhattacharya A et al (2011) Differential distribution of a SINE element in the Entamoeba histolytica and Entamoeba dispar genomes: role of the LINE-encoded endonuclease. BMC Genomics 12:267PubMedCentralPubMedGoogle Scholar
  101. 101.
    Huguenin M, Bracha R, Chookajorn T, Mirelman D (2010) Epigenetic transcriptional gene silencing in Entamoeba histolytica: insight into histone and chromatin modifications. Parasitology 137:619–627PubMedGoogle Scholar
  102. 102.
    Fodinger M, Ortner S, Plaimauer B, Wiedermann G, Scheiner O et al (1993) Pathogenic Entamoeba histolytica: cDNA cloning of a histone H3 with a divergent primary structure. Mol Biochem Parasitol 59:315–322PubMedGoogle Scholar
  103. 103.
    Abed M, Ankri S (2008) Progress and prospects of gene inactivation in Entamoeba histolytica. Exp Parasitol 118:151–155PubMedGoogle Scholar
  104. 104.
    Zhang H, Ehrenkaufer GM, Pompey JM, Hackney JA, Singh U (2008) Small RNAs with 5′-polyphosphate termini associate with a Piwi-related protein and regulate gene expression in the single-celled eukaryote Entamoeba histolytica. PLoS Pathog 4:e1000219PubMedCentralPubMedGoogle Scholar
  105. 105.
    Wang F, Koyama N, Nishida H, Reith W, Tsukamoto T (2006) The assembly and maintenance of heterochromatin initiated by transgene repeats are independent of the RNA interference pathway in mammalian cells. Mol Cell Biol 26:4028–4040PubMedCentralPubMedGoogle Scholar
  106. 106.
    Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802PubMedGoogle Scholar
  107. 107.
    Jambunathan N, Martinez AW, Robert EC, Agochukwu NB, Ibos ME et al (2005) Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary. Genetics 171:913–922PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Biological ChemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations