Amebiasis pp 543-552 | Cite as

Thioredoxin Reductase and Its Role as a New Drug Target



Amebiasis causes approximately 70,000 deaths annually and is the fourth cause of death from protozoan parasites in the world. It is treated primarily with metronidazole, which has adverse side effects and is mutagenic and carcinogenic. Also, emergence of metronidazole resistance is an increasing concern. Unfortunately, better therapeutic alternatives are lacking. Drug discovery efforts have led to reprofiling of older FDA-approved drugs. This approach is advantageous because safety and pharmacokinetic effects in humans have already been confirmed clinically and approved for use.

In high-throughput screening studies, we have recently demonstrated that auranofin, a gold-containing compound that was originally approved to treat rheumatoid arthritis, has activity against trophozoites of Entamoeba histolytica, the causative agent of amebiasis. The antiparasitic activity of auranofin [1, 2] likely stems from the monovalent gold that readily dissociates and inhibits E. histolytica thioredoxin reductase, which is the only thiol-dependent flavoreductase present in this protozoan parasite [3–5]. Auranofin has also shown promising in vitro activity against metronidazole-resistant Giardia (Lars Eckmann, personal communication), Plasmodium falciparum [6], and Schistosoma mansoni [1]. Altogether, this evidence suggests that auranofin has the potential to become a broad-spectrum alternative therapeutic agent for diseases that represent a huge global burden.


Reactive Nitrogen Species Entamoeba Histolytica Echinococcus Granulosus Leishmania Infantum Trypanothione Reductase 



We thank Larissa Podust, Derek Parsonage, Anjan Debnath, and James McKerrow for their critical reading of this manuscript


  1. 1.
    Angelucci F, Sayed AA, Williams DL, Boumis G, Brunori M et al (2009) Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: structural and kinetic aspects. J Biol Chem 284:28977–28985PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ilari A, Baiocco P, Messori L, Fiorillo A, Boffi A et al (2012) A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 42:803–811PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Saccoccia F, Angelucci F, Boumis G, Brunori M, Miele AE et al (2012) On the mechanism and rate of gold incorporation into thiol-dependent flavoreductases. J Inorg Biochem 108:105–111PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Nozaki T, Asai T, Sanchez LB, Kobayashi S et al (1999) Characterization of the gene encoding serine acetyltransferae a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar: regulation and possible function of the cysteine biosynthetic pathway in Entamoeba. J Biol Chem 274:32445–32452PubMedCrossRefGoogle Scholar
  5. 5.
    Debnath A, Parsonage D, Andrade RM, He C, Cobo ER et al (2012) A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat Med 18:956–960PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sannella AR, Casini A, Gabbiani C, Messori L, Bilia AR et al (2008) New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: mechanistic and pharmacological implications. FEBS Lett 582:844–847PubMedCrossRefGoogle Scholar
  7. 7.
    Fomenko DE, Gladyshev VN (2012) Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes. Antioxid Redox Signal 16:193–201PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Becker K, Gromer S, Schirmer RH, Muller S (2000) Thioredoxin reductase as a pathophysiological factor and drug target. Eur J Biochem 267:6118–6125PubMedCrossRefGoogle Scholar
  9. 9.
    Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346(pt 1):1–8PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    McMillan PJ, Patzewitz EM, Young SE, Westrop GD, Coombs GH et al (2009) Differential inhibition of high and low Mr thioredoxin reductases of parasites by organotelluriums supports the concept that low Mr thioredoxin reductases are good drug targets. Parasitology 136:27–33PubMedCrossRefGoogle Scholar
  11. 11.
    Coombs GH, Westrop GD, Suchan P, Puzova G, Hirt RP et al (2004) The amitochondriate eukaryote Trichomonas vaginalis contains a divergent thioredoxin-linked peroxiredoxin antioxidant system. J Biol Chem 279:5249–5256PubMedCrossRefGoogle Scholar
  12. 12.
    Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML et al (2000) Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem 267:6110–6117PubMedCrossRefGoogle Scholar
  13. 13.
    Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F et al (2009) Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol Microbiol 72:518–536PubMedCrossRefGoogle Scholar
  14. 14.
    Kawazu S, Tsuji N, Hatabu T, Kawai S, Matsumoto Y et al (2000) Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 109:165–169PubMedCrossRefGoogle Scholar
  15. 15.
    Kehr S, Sturm N, Rahlfs S, Przyborski JM, Becker K (2010) Compartmentation of redox metabolism in malaria parasites. PLoS Pathog 6:e1001242PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Nickel C, Rahlfs S, Deponte M, Koncarevic S, Becker K (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid Redox Signal 8:1227–1239PubMedCrossRefGoogle Scholar
  17. 17.
    Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422PubMedCrossRefGoogle Scholar
  18. 18.
    El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G et al (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415PubMedCrossRefGoogle Scholar
  19. 19.
    Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487PubMedCrossRefGoogle Scholar
  21. 21.
    Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729PubMedCrossRefGoogle Scholar
  22. 22.
    Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248PubMedCrossRefGoogle Scholar
  23. 23.
    Krauth-Siegel RL, Enders B, Henderson GB, Fairlamb AH, Schirmer RH (1987) Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur J Biochem 164:123–128PubMedCrossRefGoogle Scholar
  24. 24.
    Cunningham ML, Fairlamb AH (1995) Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Eur J Biochem 230:460–468PubMedCrossRefGoogle Scholar
  25. 25.
    Jones DC, Ariza A, Chow WH, Oza SL, Fairlamb AH (2010) Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi. Mol Biochem Parasitol 169:12–19PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sullivan FX, Shames SL, Walsh CT (1989) Expression of Trypanosoma congolense trypanothione reductase in Escherichia coli: overproduction, purification, and characterization. Biochemistry 28:4986–4992PubMedCrossRefGoogle Scholar
  27. 27.
    Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature (Lond) 433:865–868CrossRefGoogle Scholar
  28. 28.
    Bruchhaus I, Richter S, Tannich E (1997) Characterization of two E. histolytica proteins that inactivate reactive oxygen species. Arch Med Res 28:91–92PubMedGoogle Scholar
  29. 29.
    Choi MH, Sajed D, Poole L, Hirata K, Herdman S et al (2005) An unusual surface peroxiredoxin protects invasive Entamoeba histolytica from oxidant attack. Mol Biochem Parasitol 143:80–89PubMedCrossRefGoogle Scholar
  30. 30.
    Waksman G, Krishna TS, Williams CH Jr, Kuriyan J (1994) Crystal structure of Escherichia coli thioredoxin reductase refined at 2 Ǻ resolution. Implications for a large conformational change during catalysis. J Mol Biol 236:800–816PubMedCrossRefGoogle Scholar
  31. 31.
    Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH Jr (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc Natl Acad Sci USA 94:3621–3626PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lennon BW, Williams CH Jr (1997) Reductive half-reaction of thioredoxin reductase from Escherichia coli. Biochemistry 36:9464–9477PubMedCrossRefGoogle Scholar
  33. 33.
    Lennon BW, Williams CH Jr (1996) Enzyme-monitored turnover of Escherichia coli thioredoxin reductase: insights for catalysis. Biochemistry 35:4704–4712PubMedCrossRefGoogle Scholar
  34. 34.
    Veine DM, Ohnishi K, Williams CH Jr (1998) Thioredoxin reductase from Escherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Protein Sci 7:369–375PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Williams CH Jr (1995) Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J 9:1267–1276PubMedGoogle Scholar
  36. 36.
    Bruchhaus I, Richter S, Tannich E (1998) Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica. Biochem J 330(Pt 3):1217–1221PubMedCentralPubMedGoogle Scholar
  37. 37.
    Arias DG, Gutierrez CE, Iglesias AA, Guerrero SA (2007) Thioredoxin-linked metabolism in Entamoeba histolytica. Free Radic Biol Med 42:1496–1505PubMedCrossRefGoogle Scholar
  38. 38.
    Arias DG, Carranza PG, Lujan HD, Iglesias AA, Guerrero SA (2008) Immunolocalization and enzymatic functional characterization of the thioredoxin system in Entamoeba histolytica. Free Radic Biol Med 45:32–39PubMedCrossRefGoogle Scholar
  39. 39.
    Arias DG, Regner EL, Iglesias AA, Guerrero SA (2012) Entamoeba histolytica thioredoxin reductase: molecular and functional characterization of its atypical properties. Biochim Biophys Acta 1820:1859–1866PubMedCrossRefGoogle Scholar
  40. 40.
    Ariyanayagam MR, Fairlamb AH (1999) Entamoeba histolytica lacks trypanothione metabolism. Mol Biochem Parasitol 103:61–69PubMedCrossRefGoogle Scholar
  41. 41.
    Piattoni CV, Blancato VS, Miglietta H, Iglesias AA, Guerrero SA (2006) On the occurrence of thioredoxin in Trypanosoma cruzi. Acta Trop 97:151–160PubMedCrossRefGoogle Scholar
  42. 42.
    Gottlieb NL (1986) Pharmacology of auranofin: overview and update. Scand J Rheumatol Suppl 63:19–28PubMedGoogle Scholar
  43. 43.
    Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J et al (2007) Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med 4:e206PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lobanov AV, Gromer S, Salinas G, Gladyshev VN (2006) Selenium metabolism in Trypanosoma: characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein. Nucleic Acids Res 34:4012–4024PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Bonilla M, Denicola A, Novoselov SV, Turanov AA, Protasio A et al (2008) Platyhelminth mitochondrial and cytosolic redox homeostasis is controlled by a single thioredoxin glutathione reductase and dependent on selenium and glutathione. J Biol Chem 283:17898–17907PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Sen A, Chatterjee NS, Akbar MA, Nandi N, Das P (2007) The 29-kilodalton thiol-dependent peroxidase of Entamoeba histolytica is a factor involved in pathogenesis and survival of the parasite during oxidative stress. Eukaryot Cell 6:664–673PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of PathologyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations