Skip to main content

Metronidazole and the Redox Biochemistry of Entamoeba histolytica

  • Chapter
  • First Online:
Amebiasis

Abstract

Metronidazole remains the gold standard drug for treatment for Entamoeba histolytica infections. In the introduction of this chapter, the drug is described: its history, its major uses, and some concerns raised about its genotoxicity in the past. Even a short introduction shows that the activity of metronidazole is closely linked with the redox metabolism of its target organisms. Thus, in the first section, the metabolism of E. histolytica under microaerophilic conditions is described. The second section reviews the thiol-containing antioxidant systems of E. histolytica in comparison to other organisms. The third part considers how E. histolytica can handle and inactivate molecular oxygen and more reactive oxygen and nitrogen species. In the fourth part, the activity of metronidazole is discussed in the light of the redox metabolism of E. histolytica. The fifth part addresses the prospects of metronidazole resistance, and the chapter ends with a final section on perspectives, where we stand, and some of the unresolved questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DPI:

Diphenyleneiodonium

DTNB:

5,5â€Č-Dithiobis-(2-nitrobenzoic acid)

DTT:

Dithiothreitol

FDP:

Flavin diiron protein

PFOR:

Pyruvate ferredoxin oxidoreductase

SAT:

Serine acetyl transferase

References

  1. Freeman CD, Klutman NE, Lamp KC (1997) Metronidazole. A therapeutic review and update. Drugs 54:679–708

    CAS  PubMed  Google Scholar 

  2. Löfmark S, Edlund C, Nord CE (2010) Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 50(suppl 1):S16–S23. doi:10.1086/647939

    PubMed  Google Scholar 

  3. World Health Organization. WHO Model List of Essential Medicines, http://www.who.int/medicines/publications/essentialmedicines/18th_EML_Final_web_8Jul13.pdf. Accessed 25 Aug 2013

  4. Maeda K, Osato T, Umezawa H (1953) A new antibiotic, azomycin. J Antibiot (Tokyo) 6:182

    CAS  Google Scholar 

  5. Anonymous. Antibiotics: curing infectious diseases. In: Gambrelle F, Torres F (eds) Innovating for life: Rhîne-Poulenc 1895–1995. Michel, Paris, pp 32–39

    Google Scholar 

  6. Cosar C, Julou L (1959) The activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (R. P. 8823) against experimental Trichomonas vaginalis infections. Ann Inst Pasteur (Paris) 96:238–241 (in French)

    CAS  Google Scholar 

  7. Lionetto MD, Manera OO, Rocca JA (1963) Treatment of Giardia lamblia infection. Dia Med 35:1704–1705 (in Spanish)

    CAS  PubMed  Google Scholar 

  8. Shinn DLS (1962) Metronidazole in acute ulcerative gingivitis. Lancet 1(7240):1191

    Google Scholar 

  9. Powell SJ, MacLeod I, Wilmot AJ, Elsdon-Dew R (1966) Metronidazole in amoebic dysentery and amoebic liver abscess. Lancet 2(7477):1329–1331

    CAS  PubMed  Google Scholar 

  10. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE 3rd (2008) PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322(5906):1392–1395

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Amon I, Amon K, HĂŒller H (1978) Pharmacokinetics and therapeutic efficacy of metronidazole at different dosages. Int J Clin Pharmacol Biopharm 16:384–386

    CAS  PubMed  Google Scholar 

  12. Bendesky A, MenĂ©ndez D, Ostrosky-Wegman P (2002) Is metronidazole carcinogenic? Mutat Res 511:133–144

    CAS  PubMed  Google Scholar 

  13. Reeves RE (1984) Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol 23:105–142

    CAS  PubMed  Google Scholar 

  14. Reeves RE, South DJ, Blytt HJ, Warren LG (1974) Pyrophosphate:d-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem 249:7737–7741

    CAS  PubMed  Google Scholar 

  15. Reeves RE, South DJ (1974) Phosphoglycerate kinase (GTP). An enzyme from Entamoeba histolytica selective for guanine nucleotides. Biochem Biophys Res Commun 58:1053–1057

    CAS  PubMed  Google Scholar 

  16. Saavedra-Lira E, Ramirez-Silva L, Perez-Montfort R (1998) Expression and characterization of recombinant pyruvate phosphate dikinase from Entamoeba histolytica. Biochim Biophys Acta 1382:47–54

    CAS  PubMed  Google Scholar 

  17. Takeuchi T, Weinbach EC, Diamond LS (1975) Pyruvate oxidase (CoA acetylating) in Entamoeba histolytica. Biochem Biophys Res Commun 65:591–596

    CAS  PubMed  Google Scholar 

  18. Reeves RE, Warren LG, Susskind B, Lo HS (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731

    CAS  PubMed  Google Scholar 

  19. Upcroft JA, Upcroft P (1999) Keto-acid oxidoreductases in the anaerobic protozoa. J Eukaryot Microbiol 46:447–449

    CAS  PubMed  Google Scholar 

  20. Montalvo FE, Reeves RE, Warren LG (1971) Aerobic and anaerobic metabolism in Entamoeba histolytica. Exp Parasitol 30:249–256

    CAS  PubMed  Google Scholar 

  21. Weinbach EC, Diamond LS (1974) Entamoeba histolytica. I. Aerobic metabolism. Exp Parasitol 35:232–243

    CAS  PubMed  Google Scholar 

  22. Nandi N, Sen A, Banerjee R, Kumar S, Kumar V, Ghosh AN, Das P (2010) Hydrogen peroxide induces apoptosis-like death in Entamoeba histolytica trophozoites. Microbiology 156:1926–1941

    CAS  PubMed  Google Scholar 

  23. Ghosh AS, Dutta S, Raha S (2010) Hydrogen peroxide-induced apoptosis-like cell death in Entamoeba histolytica. Parasitol Int 59:166–172

    CAS  PubMed  Google Scholar 

  24. Lo Conte M, Carroll KS (2013) The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 288(37):26480–26488

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239:3436–3444

    CAS  PubMed  Google Scholar 

  26. Lu J, Holmgren A (2013) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    PubMed  Google Scholar 

  27. Buchanan BB, Holmgren A, Jacquot JP, Scheibe R (2012) Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta 1820:1822–1829

    CAS  PubMed  Google Scholar 

  28. Balmer Y, Koller A, del Val G, Manieri W, SchĂŒrmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Schlosser S, Leitsch D, DuchĂȘne M (2013) Entamoeba histolytica: identification of thioredoxin-targeted proteins and analysis of serine acetyltransferase-1 as a prototype example. Biochem J 451:277–288

    CAS  PubMed  Google Scholar 

  30. Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    CAS  PubMed  Google Scholar 

  31. Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269:9397–9400

    CAS  PubMed  Google Scholar 

  32. Jortzik E, Becker K (2012) Thioredoxin and glutathione systems in Plasmodium falciparum. Int J Med Microbiol 302:187–194

    CAS  PubMed  Google Scholar 

  33. Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (1984) Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224:70–72

    CAS  PubMed  Google Scholar 

  34. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227:1485–1487

    CAS  PubMed  Google Scholar 

  35. Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729

    CAS  PubMed  Google Scholar 

  36. Krauth-Siegel RL, Leroux AE (2012) Low-molecular-mass antioxidants in parasites. Antioxid Redox Signal 17:583–607

    CAS  PubMed  Google Scholar 

  37. Ondarza RN, Tamayo EM, Hurtado G, Hernández E, Iturbe A (1997) Isolation and purification of glutathionyl-spermidine and trypanothione from Entamoeba histolytica. Arch Med Res 28 (spec no):73–75

    Google Scholar 

  38. Ondarza RN, Hurtado G, Iturbe A, Hernández E, Tamayo E, Woolery M (2005) Identification of trypanothione from the human pathogen Entamoeba histolytica by mass spectrometry and chemical analysis. Biotechnol Appl Biochem 42:175–181

    CAS  PubMed  Google Scholar 

  39. Ariyanayagam MR, Fairlamb AH (1999) Entamoeba histolytica lacks trypanothione metabolism. Mol Biochem Parasitol 103:61–69

    CAS  PubMed  Google Scholar 

  40. Tamayo EM, Iturbe A, HernĂĄndez E, Hurtado G, de Lourdes GutiĂ©rrez XM, Rosales JL, Woolery M, Ondarza RN (2005) Trypanothione reductase from the human parasite Entamoeba histolytica: a new drug target. Biotechnol Appl Biochem 41:105–115

    CAS  PubMed  Google Scholar 

  41. Gillin FD, Diamond LS (1981) Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp Parasitol 52:9–17

    CAS  PubMed  Google Scholar 

  42. Wong WK, Tan ZN, Lim BH, Mohamed Z, Olivos-Garcia A, Noordin R (2011) Comparison of protein-free defined media, and effect of l-cysteine and ascorbic acid supplementation on viability of axenic Entamoeba histolytica. Parasitol Res 108:425–430

    PubMed  Google Scholar 

  43. Husain A, Jeelani G, Sato D, Nozaki T (2011) Global analysis of gene expression in response to l-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. BMC Genomics 12:275. doi:10.1186/1471-2164-12-275

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Nozaki T, Asai T, Sanchez LB, Kobayashi S, Nakazawa M, Takeuchi T (1999) Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba. J Biol Chem 274:32445–32452

    CAS  PubMed  Google Scholar 

  45. Hussain S, Ali V, Jeelani G, Nozaki T (2009) Isoform-dependent feedback regulation of serine O-acetyltransferase isoenzymes involved in l-cysteine biosynthesis of Entamoeba histolytica. Mol Biochem Parasitol 163:39–47

    CAS  PubMed  Google Scholar 

  46. Nozaki T, Asai T, Kobayashi S, Ikegami F, Noji M, Saito K, Takeuchi T (1998) Molecular cloning and characterization of the genes encoding two isoforms of cysteine synthase in the enteric protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 97:33–44

    CAS  PubMed  Google Scholar 

  47. Kumar S, Raj I, Nagpal I, Subbarao N, Gourinath S (2011) Structural and biochemical studies of serine acetyltransferase reveal why the parasite Entamoeba histolytica cannot form a cysteine synthase complex. J Biol Chem 286:12533–12541

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Agarwal SM, Jain R, Bhattacharya A, Azam A (2008) Inhibitors of Escherichia coli serine acetyltransferase block proliferation of Entamoeba histolytica trophozoites. Int J Parasitol 38:137–141

    CAS  PubMed  Google Scholar 

  49. Band RN, Cirrito H (1979) Growth response of axenic Entamoeba histolytica to hydrogen, carbon dioxide, and oxygen. J Protozool 26:282–286

    CAS  PubMed  Google Scholar 

  50. Vicente JB, Justino MC, Gonçalves VL, Saraiva LM, Teixeira M (2008) Biochemical, spectroscopic, and thermodynamic properties of flavodiiron proteins. Methods Enzymol 437:21–45

    CAS  PubMed  Google Scholar 

  51. Vicente JB, Tran V, Pinto L, Teixeira M, Singh U (2012) A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica. Eukaryot Cell 11:1112–1118. doi:10.1128/EC.00149-12

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Bruchhaus I, Richter S, Tannich E (1998) Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica. Biochem J 330:1217–1221

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Arias DG, Regner EL, Iglesias AA, Guerrero SA (2012) Entamoeba histolytica thioredoxin reductase: molecular and functional characterization of its atypical properties. Biochim Biophys Acta 1820:1859–1866. doi:10.1016/j.bbagen.2012.08.020

    CAS  PubMed  Google Scholar 

  54. Jeelani G, Husain A, Sato D, Ali V, Suematsu M, Soga T, Nozaki T (2010) Two atypical l-cysteine-regulated NADPH-dependent oxidoreductases involved in redox maintenance, l-cystine and iron reduction, and metronidazole activation in the enteric protozoan Entamoeba histolytica. J Biol Chem 285:26889–26899. doi:10.1074/jbc.M110.106310

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kobayashi T, Tsunawaki S, Seguchi H (2001) Evaluation of the process for superoxide production by NADPH oxidase in human neutrophils: evidence for cytoplasmic origin of superoxide. Redox Rep 6:27–36

    CAS  PubMed  Google Scholar 

  56. Tannich E, Bruchhaus I, Walter RD, Horstmann RD (1991) Pathogenic and nonpathogenic Entamoeba histolytica: identification and molecular cloning of an iron-containing superoxide dismutase. Mol Biochem Parasitol 49:61–71

    CAS  PubMed  Google Scholar 

  57. Torian BE, Flores BM, Stroeher VL, Hagen FS, Stamm WE (1990) cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica. Proc Natl Acad Sci USA 87:6358–6362

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bruchhaus I, Tannich E (1993) Analysis of the genomic sequence encoding the 29-kDa cysteine-rich protein of Entamoeba histolytica. Trop Med Parasitol 44:116–118

    CAS  PubMed  Google Scholar 

  59. Bruchhaus I, Richter S, Tannich E (1997) Removal of hydrogen peroxide by the 29-kDa protein of Entamoeba histolytica. Biochem J 326:785–789

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Poole LB, Chae HZ, Flores BM, Reed SL, Rhee SG, Torian BE (1997) Peroxidase activity of a TSA-like antioxidant protein from a pathogenic amoeba. Free Radic Biol Med 23:955–959

    CAS  PubMed  Google Scholar 

  61. Arias DG, Gutierrez CE, Iglesias AA, Guerrero SA (2007) Thioredoxin-linked metabolism in Entamoeba histolytica. Free Radic Biol Med 42:1496–1505

    CAS  PubMed  Google Scholar 

  62. MacFarlane RC, Singh U (2006) Identification of differentially expressed genes in virulent and nonvirulent Entamoeba species: potential implications for amebic pathogenesis. Infect Immun 74:340–351

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Davis PH, Zhang X, Guo J, Townsend RR, Stanley SL Jr (2006) Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence. Mol Microbiol 61:1523–1532

    CAS  PubMed  Google Scholar 

  64. Isakov E, Siman-Tov R, Weber C, Guillen N, Ankri S (2008) Trichostatin A regulates peroxiredoxin expression and virulence of the parasite Entamoeba histolytica. Mol Biochem Parasitol 158:82–94. doi:10.1016/j.molbiopara.2007.11.014

    CAS  PubMed  Google Scholar 

  65. Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J (2010) Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12:331–342. doi:10.1111/j.1462-5822.2009.01397

    CAS  PubMed  Google Scholar 

  66. SĂ©guin R, Mann BJ, Keller K, Chadee K (1997) The tumor necrosis factor alpha-stimulating region of galactose-inhibitable lectin of Entamoeba histolytica activates gamma interferon-primed macrophages for amebicidal activity mediated by nitric oxide. Infect Immun 65:2522–2527

    PubMed Central  PubMed  Google Scholar 

  67. Seydel KB, Smith SJ, Stanley SL Jr (2000) Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease. Infect Immun 68:400–402

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Ramos E, Olivos-GarcĂ­a A, Nequiz M, Saavedra E, Tello E, Saralegui A, Montfort I, PĂ©rez Tamayo R (2007) Entamoeba histolytica: apoptosis induced in vitro by nitric oxide species. Exp Parasitol 116:257–265

    CAS  PubMed  Google Scholar 

  69. Santi-Rocca J, Smith S, Weber C, Pineda E, Hon CC, Saavedra E, Olivos-García A, Rousseau S, Dillies MA, Coppée JY, Guillén N (2012) Endoplasmic reticulum stress-sensing mechanism is activated in Entamoeba histolytica upon treatment with nitric oxide. PLoS One 7:e31777. doi:10.1371/journal.pone.0031777

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Sannella A, Gradoni L, Persichini T, Ongini E, Venturini G, Colasanti M (2003) Intracellular release of nitric oxide by NCX 972, an NO-releasing metronidazole, enhances in vitro killing of Entamoeba histolytica. Antimicrob Agents Chemother 47:2303–2306

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Vicente JB, Ehrenkaufer GM, Saraiva LM, Teixeira M, Singh U (2009) Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol 11:51–69. doi:10.1111/j.1462-5822.2008.01236.x

    CAS  PubMed Central  PubMed  Google Scholar 

  72. MĂŒller M (1983) Mode of action of metronidazole on anaerobic bacteria and protozoa. Surgery (St Louis) 93:165–171

    Google Scholar 

  73. Moreno SN, Mason RP, Muniz RP, Cruz FS, Docampo R (1983) Generation of free radicals from metronidazole and other nitroimidazoles by Tritrichomonas foetus. J Biol Chem 258:4051–4054

    CAS  PubMed  Google Scholar 

  74. Zahoor A, Lafleur MV, Knight RC, Loman H, Edwards DI (1987) DNA damage induced by reduced nitroimidazole drugs. Biochem Pharmacol 36:3299–3304

    CAS  PubMed  Google Scholar 

  75. Wardman P (1985) Some reactions and properties of nitro radical-anions important in biology and medicine. Environ Health Perspect 64:309–320

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Mason RP, Holtzman JL (1975) The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem Biophys Res Commun 67:1267–1274

    CAS  PubMed  Google Scholar 

  77. West SB, Wislocki PG, Fiorentini KM, Alvaro R, Wolf FJ, Lu AY (1982) Drug residue formation from ronidazole, a 5-nitroimidazole. I. Characterization of in vitro protein alkylation. Chem Biol Interact 41:265–279

    CAS  PubMed  Google Scholar 

  78. Ludlum DB, Colinas RJ, Kirk MC, Mehta JR (1988) Reaction of reduced metronidazole with guanosine to form an unstable adduct. Carcinogenesis (Oxf) 9:593–596

    CAS  Google Scholar 

  79. Leitsch D, Kolarich D, Wilson IB, Altmann F, DuchĂȘne M (2007) Nitroimidazole action in Entamoeba histolytica: a central role for thioredoxin reductase. PLoS Biol 5:e211

    PubMed Central  PubMed  Google Scholar 

  80. West SB, Wislocki PG, Wolf FJ, Lu AY (1982) Drug residue formation from ronidazole, a 5-nitroimidazole. II. Involvement of microsomal NADPH-cytochrome P-450 reductase in protein alkylation in vitro. Chem Biol Interact 41:281–296

    PubMed  Google Scholar 

  81. Moreno SN, Mason RP, Docampo R (1984) Distinct reduction of nitrofurans and metronidazole to free radical metabolites by Tritrichomonas foetus hydrogenosomal and cytosolic enzymes. J Biol Chem 259:8252–8259

    CAS  PubMed  Google Scholar 

  82. Lindmark DG, MĂŒller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    CAS  PubMed  Google Scholar 

  83. Chapman A, Cammack R, Linstead D, Lloyd D (1985) The generation of metronidazole radicals in hydrogenosomes isolated from Trichomonas vaginalis. J Gen Microbiol 131:2141–2144

    CAS  PubMed  Google Scholar 

  84. Reeves RE, Guthrie JD, Lobelle-Rich P (1980) Entamoeba histolytica: isolation of ferredoxin. Exp Parasitol 49:83–88

    CAS  PubMed  Google Scholar 

  85. Vidakovic M, Crossnoe CR, Neidre C, Kim K, Krause KL, Germanas JP (2003) Reactivity of reduced [2Fe–2S] ferredoxins parallels host susceptibility to nitroimidazoles. Antimicrob Agents Chemother 47:302–308

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Leitsch D, Kolarich D, Binder M, Stadlmann J, Altmann F, DuchĂȘne M (2009) Trichomonas vaginalis: metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Mol Microbiol 72:518–536

    CAS  PubMed  Google Scholar 

  87. Leitsch D, Burgess AG, Dunn LA, Krauer KG, Tan K, DuchĂȘne M, Upcroft P, Eckmann L, Upcroft JA (2011) Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J Antimicrob Chemother 66:1756–1765. doi:10.1093/jac/dkr192

    CAS  PubMed Central  PubMed  Google Scholar 

  88. MĂŒller M, Lindmark DG (1976) Uptake of metronidazole and its effect on viability in trichomonads and Entamoeba invadens under anaerobic and aerobic conditions. Antimicrob Agents Chemother 9:696–700

    PubMed Central  PubMed  Google Scholar 

  89. Arias DG, Carranza PG, Lujan HD, Iglesias AA, Guerrero SA (2008) Immunolocalization and enzymatic functional characterization of the thioredoxin system in Entamoeba histolytica. Free Radic Biol Med 45:32–39. doi:10.1016/j.freeradbiomed.2008.03.008

    CAS  PubMed  Google Scholar 

  90. RodrĂ­guez MA, GarcĂ­a-PĂ©rez RM, Mendoza L, SĂĄnchez T, Guillen N, Orozco E (1998) The pyruvate:ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba. Microb Pathog 25:1–10

    PubMed  Google Scholar 

  91. Borst P, Ouellette M (1995) New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol 49:427–460

    CAS  PubMed  Google Scholar 

  92. López-Camarillo C, Luna-Arias JP, Marchat LA, Orozco E (2003) EhPgp5 mRNA stability is a regulatory event in the Entamoeba histolytica multidrug resistance phenotype. J Biol Chem 278:11273–11280

    PubMed  Google Scholar 

  93. Carlier JP, Sellier N, Rager MN, Reysset G (1997) Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob Agents Chemother 41:1495–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Pal D, Banerjee S, Cui J, Schwartz A, Ghosh SK, Samuelson J (2009) Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrob Agents Chemother 53:458–464. doi:10.1128/AAC.00909-08

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Jennison RF, Stenton P, Watt L (1961) Laboratory studies with the systemic trichomonacide, metronidazole. J Clin Pathol 14:431–435

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Thurner J, Meingassner JG (1978) Isolation of Trichomonas vaginalis resistant to metronidazole. Lancet 2(8092 pt 1):738

    CAS  PubMed  Google Scholar 

  97. Kulda J, Vojtĕchovská M, Tachezy J, Demes P, Kunzová E (1982) Metronidazole resistance of Trichomonas vaginalis as a cause of treatment failure in trichomoniasis–a case report. Br J Vener Dis 58:394–399

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Quon DV, d’Oliveira CE, Johnson PJ (1992) Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis. Proc Natl Acad Sci USA 89:4402–4406

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Tachezy J, Kulda J, Tomková E (1993) Aerobic resistance of Trichomonas vaginalis to metronidazole induced in vitro. Parasitology 106:31–37

    CAS  PubMed  Google Scholar 

  100. Kulda J, Tachezy J, Cerkasovová A (1993) In vitro induced anaerobic resistance to metronidazole in Trichomonas vaginalis. J Eukaryot Microbiol 40:262–269

    CAS  PubMed  Google Scholar 

  101. Kulda J (1999) Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol 29:199–212

    CAS  PubMed  Google Scholar 

  102. Land KM, Clemens DL, Johnson PJ (2001) Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Exp Parasitol 97:102–110

    CAS  PubMed  Google Scholar 

  103. Land KM, Delgadillo MG, Johnson PJ (2002) In vivo expression of ferredoxin in a drug resistant trichomonad increases metronidazole susceptibility. Mol Biochem Parasitol 121:153–157

    CAS  PubMed  Google Scholar 

  104. Land KM, Delgadillo-Correa MG, Tachezy J, Vanacova S, Hsieh CL, Sutak R, Johnson PJ (2004) Targeted gene replacement of a ferredoxin gene in Trichomonas vaginalis does not lead to metronidazole resistance. Mol Microbiol 51:115–122

    CAS  PubMed  Google Scholar 

  105. Leitsch D, Kolarich D, DuchĂȘne M (2010) The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways. Mol Biochem Parasitol 171:17–24. doi:10.1016/j.molbiopara.2010.01.001

    CAS  PubMed  Google Scholar 

  106. Nash TE (2013) Unraveling how Giardia infections cause disease. J Clin Invest 123:2346–2347

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Samarawickrema NA, Brown DM, Upcroft JA, Thammapalerd N, Upcroft P (1997) Involvement of superoxide dismutase and pyruvate:ferredoxin oxidoreductase in mechanisms of metronidazole resistance in Entamoeba histolytica. J Antimicrob Chemother 40:833–840

    CAS  PubMed  Google Scholar 

  108. Wassmann C, Hellberg A, Tannich E, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274:26051–26056

    CAS  PubMed  Google Scholar 

  109. Wassmann C, Bruchhaus I (2000) Superoxide dismutase reduces susceptibility to metronidazole of the pathogenic protozoan Entamoeba histolytica under microaerophilic but not under anaerobic conditions. Arch Biochem Biophys 376:236–238

    CAS  PubMed  Google Scholar 

  110. Tazreiter M, Leitsch D, Hatzenbichler E, Mair-Scorpio GE, Steinborn R, Schreiber M, DuchĂȘne M (2008) Entamoeba histolytica: response of the parasite to metronidazole challenge on the levels of mRNA and protein expression. Exp Parasitol 120:403–410. doi:10.1016/j.exppara.2008.09.011

    CAS  PubMed  Google Scholar 

  111. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM, Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620. doi:10.1056/NEJMc0805011

    CAS  PubMed  Google Scholar 

  112. Debnath A, Parsonage D, Andrade RM, He C, Cobo ER, Hirata K, Chen S, García-Rivera G, Orozco E, Martínez MB, Gunatilleke SS, Barrios AM, Arkin MR, Poole LB, McKerrow JH, Reed SL (2012) A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat Med 18:956–960. doi:10.1038/nm.2758

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Tejman-Yarden N, Miyamoto Y, Leitsch D, Santini J, Debnath A, Gut J, McKerrow JH, Reed SL, Eckmann L (2013) A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob Agents Chemother 57:2029–2035. doi:10.1128/AAC.01675-1210.1128/AAC.01675-12

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael DuchĂȘne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

DuchĂȘne, M. (2015). Metronidazole and the Redox Biochemistry of Entamoeba histolytica . In: Nozaki, T., Bhattacharya, A. (eds) Amebiasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55200-0_30

Download citation

Publish with us

Policies and ethics