Amebiasis pp 497-519 | Cite as

Immune Response in Human Amebiasis: A Protective Response?

  • Cecilia Ximenez
  • Oswaldo Partida
  • Miriam Nieves
  • Eric Hernandez
  • Patricia Moran
  • Alicia Valadez
  • Enrique Gonzalez
  • Rene Cerritos
  • Liliana Rojas


Infection with Entamoeba histolytica provokes human diseases that range from amebic colitis to the life-threatening amebic liver abscess; nonetheless, about 90 % of infected people do not develop any symptom. What circumstances or which events in the dynamics of the host–parasite relationship define the outcome of infection? What are the causes that allow the apparently spontaneous clearance of the infection? How protective is the immune response against E. histolytica? Why do some infected people remain asymptomatic and why do others develop clinical symptoms? What is the role of immunogenetic polymorphism in the final outcome of the infection? These questions are the major aims of many research groups around the world. In the present review, we analyze the potential participation of the immune system and the genetic variants of genes associated with immune response in the human host with its susceptibility or resistance to develop amebic invasive disease.


Intestinal Microbiota Human Leukocyte Antigen Class iNKT Cell Mucous Layer Entamoeba Histolytica 



Amebic liver abscess


Antigen-presenting cell




Carbohydrate recognition domain


Dendritic cell


Entamoeba histolytica cysteine proteinase 5




Human leukocyte antigen


Induced regulatory T cell








Innate lymphoid cell


Isolated lymphoid follicle


Leukocyte function-associated antigen-1 integrin




Leucine-rich repeats


Lymphoid tissue inducer


Major histocompatibility complex


Nuclear factor κB


Natural killer cell


Natural killer T cell


Nitric oxide


Pathogen-associated molecular pattern


Pattern recognition receptor


Reactive oxygen species


Segmented filamentous bacteria


Single-nucleotide polymorphism


T-cell receptor


Transforming growth factor-β


Toll/interleukin-1 receptor


Toll-like receptor


Tumor necrosis factor


Regulatory T cell



The authors thank, for financial support, the National Council for Science and Technology (CONACyT): Grant 2010-1-140990, and SEP-CONACyT 79220; and by the PAPIIT program for Scientific Research Development (DGAPA) UNAM: Grants PAPIIT IN204208, IN206408, IN206405, IN226511 and PAPIME 200105.


  1. 1.
    World Health Organization (1997) Amoebiasis. Wkly Epidemiol Rec 72(14):97–99Google Scholar
  2. 2.
    Petri WA Jr, Haque R, Lyerly D, Vines RR (2000) Estimating the impact of amebiasis on health. Parasitol Today 16(8):320–321. doi: 10.1016/S0169-4758(00)01730-0 PubMedGoogle Scholar
  3. 3.
    Haque R, Huston CD, Hughes M, Houpt E, Petri WA Jr (2003) Amebiasis. N Engl J Med 348(16):1565–1573. doi: 10.1056/NEJMra022710 PubMedGoogle Scholar
  4. 4.
    Ravdin JI (1995) Amebiasis. Clin Infect Dis 20(6):1453–1466. doi: 10.1093/clinids/20.6.1453 PubMedGoogle Scholar
  5. 5.
    Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105(39):15064–15069. doi: 10.1073/pnas.0803124105 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Chadee K, Petri WA Jr, Innes DJ, Ravdin JI (1987) Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest 80(5):1245–1254. doi: 10.1172/JCI113199 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273. doi: 10.1126/science.1223490 PubMedGoogle Scholar
  8. 8.
    Chieppa M, Rescigno M, Huang AY, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13):2841–2852. doi: 10.1084/jem.20061884 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Haque R, Ali IM, Sack B, Farr BM, Ramakrishnan G, Petri WA Jr (2001) Amebiasis and mucosal IgA antibody against the Entamoeba histolytica adherence lectin in Bangladeshi children. J Infect Dis 183(12):1787/1793Google Scholar
  10. 10.
    Variyam EP (2007) Luminal host-defense mechanisms against invasive amebiasis. Trends Parasitol 23(3):108–111. doi: 10.1016/ PubMedGoogle Scholar
  11. 11.
    Lidell ME, Moncada DM, Chadee K, Hansson GC (2006) Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci USA 103(24):9298–9303. doi: 10.1073/pnas.0600623103 PubMedCentralPubMedGoogle Scholar
  12. 12.
    Petri WA Jr, Chapman MD, Snodgrass T, Mann BJ, Broman J, Ravdin JI (1989) Subunit structure of the galactose and N-acetyl-d-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. J Biol Chem 264(5):3007–3012PubMedGoogle Scholar
  13. 13.
    Eckmann L, Reed SL, Smith JR, Kagnoff MF (1995) Entamoeba histolytica trophozoites induce an inflammatory cytokine response by cultured human cells through the paracrine action of cytolytically released interleukin-1 alpha. J Clin Invest 96(3):1269–1279. doi: 10.1172/JCI118161 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Yu Y, Chadee K (1997) Entamoeba histolytica stimulates interleukin 8 from human colonic epithelial cells without parasite–enterocyte contact. Gastroenterology 112(5):1536–1547PubMedGoogle Scholar
  15. 15.
    Prathap K, Gilman R (1970) The histopathology of acute intestinal amebiasis. A rectal biopsy study. Am J Pathol 60(2):229–246PubMedCentralPubMedGoogle Scholar
  16. 16.
    Zhang Z, Wang L, Seydel KB, Li E, Ankri S, Mirelman D, Stanley SL Jr (2000) Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol 37(3):542–548. doi: 10.1046/j.1365-2958.2000.02037.x PubMedGoogle Scholar
  17. 17.
    Mortimer L, Chadee K (2010) The immunopathogenesis of Entamoeba histolytica. Exp Parasitol 126(3):366–380. doi: 10.1016/j.exppara.2010.03.005 PubMedGoogle Scholar
  18. 18.
    Velazquez C, Shibayama-Salas M, Aguirre-Garcia J, Tsutsumi V, Calderon J (1998) Role of neutrophils in innate resistance to Entamoeba histolytica liver infection in mice. Parasite Immunol 20(6):255–262. doi: 10.1046/j.1365-3024.1998.00128.x PubMedGoogle Scholar
  19. 19.
    Asgharpour A, Gilchrist C, Baba D, Hamano S, Houpt E (2005) Resistance to intestinal Entamoeba histolytica infection is conferred by innate immunity and Gr-1+ cells. Infect Immun 73(8):4522–4529. doi: 10.1128/IAI.73.8.4522-4529.2005 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Sim S, Park SJ, Yong TS, Im KI, Shin MH (2007) Involvement of beta 2-integrin in ROS-mediated neutrophil apoptosis induced by Entamoeba histolytica. Microbes Infect 9(11):1368–1375. doi: 10.1016/j.micinf.2007.06.013 PubMedGoogle Scholar
  21. 21.
    Marion S, Guillén N (2006) Genomic and proteomic approaches highlight phagocytosis of living and apoptotic human cells by the parasite Entamoeba histolytica. Int J Parasitol 36(2):131–139. doi: 10.1016/j.ijpara.2005.10.007 PubMedGoogle Scholar
  22. 22.
    Guerrant RL, Brush J, Ravdin JI, Sullivan JA, Mandell GL (1981) Interaction between Entamoeba histolytica and human polymorphonuclear neutrophils. J Infect Dis 143(1):83–93. doi: 10.1093/infdis/143.1.83 PubMedGoogle Scholar
  23. 23.
    Bruchhaus I, Tannich E (1994) Induction of the iron-containing superoxide dismutase in Entamoeba histolytica by a superoxide anion-generating system or by iron chelation. Mol Biochem Parasitol 67(2):281–288. doi: 10.1016/0166-6851(94)00143-X PubMedGoogle Scholar
  24. 24.
    Poole LB, Chae HZ, Flores BM, Reed SL, Rhee SG, Torian BE (1997) Peroxidase activity of a TSA-like antioxidant protein from a pathogenic amoeba. Free Radic Biol Med 23(6):955–959. doi: 10.1016/S0891-5849(97)00066-X PubMedGoogle Scholar
  25. 25.
    Elnekave K, Siman-Tov R, Ankri S (2003) Consumption of l-arginine mediated by Entamoeba histolytica L-arginase (EhArg) inhibits amoebicidal activity and nitric oxide production by activated macrophages. Parasite Immunol 25(11-12):597–608. doi: 10.1111/j.0141-9838.2004.00669.x PubMedGoogle Scholar
  26. 26.
    Burchard GD, Prange G, Mirelman D (1993) Interaction between trophozoites of Entamoeba histolytica and the human intestinal cell line HT-29 in the presence or absence of leukocytes. Parasitol Res 79(2):140–145. doi: 10.1007/BF00932260 PubMedGoogle Scholar
  27. 27.
    Salata RA, Ravdin JI (1986) The interaction of human neutrophils and Entamoeba histolytica increases cytopathogenicity for liver cell monolayers. J Infect Dis 154(1):19–26. doi: 10.1093/infdis/154.1.19 PubMedGoogle Scholar
  28. 28.
    Mowat AM, Bain CC (2011) Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun 3(6):550–564. doi: 10.1159/000329099 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Smith PD, Ochsenbauer-Jambor C, Smythies LE (2005) Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 206(1):149–159. doi: 10.1111/j.0105-2896.2005.00288.x PubMedGoogle Scholar
  30. 30.
    Smith PD, Smythies LE, Mosteller-Barnum M, Sibley DA, Russell MW, Merger M, Sellers MT, Orenstein JM, Shimada T, Graham MF, Kubagawa H (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167(5):2651–2656, PubMedGoogle Scholar
  31. 31.
    Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115(1):66–75. doi: 10.1172/JCI19229 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Saharinen J, Hyytiäinen M, Taipale J, Keski-Oja J (1999) Latent transforming growth factor-beta binding proteins (LTBPs)-structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 10(2):99–117PubMedGoogle Scholar
  33. 33.
    Chadee K, Meerovitch E (1985) Entamoeba histolytica: early progressive pathology in the cecum of the gerbil (Meriones unguiculatus). Am J Trop Med Hyg 34(2):283–291PubMedGoogle Scholar
  34. 34.
    Hamano S, Asgharpour A, Stroup SE, Wynn TA, Leiter EH, Houpt E (2006) Resistance of C57BL/6 mice to amoebiasis is mediated by nonhemopoietic cells but requires hemopoietic IL-10 production. J Immunol 177(2):1208–1213, PubMedGoogle Scholar
  35. 35.
    Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK (2001) Type 1 T regulatory cells. Immunol Rev 182:68–79PubMedGoogle Scholar
  36. 36.
    Schwerbrock NM, Makkink MK, van der Sluis M, Büller HA, Einerhand AW, Sartor RB, Dekker J (2004) Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm Bowel Dis 10(6):811–823. doi: 10.1097/00054725-200411000-00016 PubMedGoogle Scholar
  37. 37.
    Zhou P, Streutker C, Borojevic R, Wang Y, Croitoru K (2004) IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy. Am J Physiol Gastrointest Liver Physiol 287(3):G599–G604. doi: 10.1152/ajpgi.00063.2204 PubMedGoogle Scholar
  38. 38.
    Maldonado-Bernal C, Kirschning CJ, Rosenstein Y, Rocha LM, Rios-Sarabia N, Espinosa-Cantellano M, Becker I, Estrada I, Salazar-González RM, López-Macías C, Wagner H, Sánchez J, Isibasi A (2005) The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4. Parasite Immunol 27(4):127–137. doi: 10.1111/j.1365-3024.2005.00754.x PubMedGoogle Scholar
  39. 39.
    Wong-Baeza I, Alcántara-Hernández M, Mancilla-Herrera I, Ramírez-Saldívar I, Arriaga-Pizano L, Ferat-Osorio E, López-Macías C, Isibasi A (2010) The role of lipopeptidophosphoglycan in the immune response to Entamoeba histolytica. J Biomed Biotechnol 2010:254521. doi: 10.1155/2010/254521 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Kammanadiminti SJ, Mann BJ, Dutil L, Chadee K (2004) Regulation of Toll-like receptor-2 expression by the Gal-lectin of Entamoeba histolytica. FASEB J 18(1):155–157. doi: 10.1096/fj.03-0578fje PubMedGoogle Scholar
  41. 41.
    Ivory CP, Prystajecky M, Jobin C, Chadee K (2008) Toll-like receptor 9-dependent macrophage activation by Entamoeba histolytica DNA. Infect Immun 76(1):289–297. doi: 10.1128/IAI.01217-07 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Denis M, Chadee K (1989) Cytokine activation of murine macrophages for in vitro killing of Entamoeba histolytica trophozoites. Infect Immun 57(6):1750–1756, PubMedCentralPubMedGoogle Scholar
  43. 43.
    Lin JY, Seguin R, Keller K, Chadee K (1994) Tumor necrosis factor alpha augments nitric oxide-dependent macrophage cytotoxicity against Entamoeba histolytica by enhanced expression of the nitric oxide synthase gene. Infect Immun 62(5):1534–1541, PubMedCentralPubMedGoogle Scholar
  44. 44.
    Ivory CP, Chadee K (2007) Activation of dendritic cells by the Gal-lectin of Entamoeba histolytica drives Th1 responses in vitro and in vivo. Eur J Immunol 37(2):385–394. doi: 10.1002/eji.200636476 PubMedGoogle Scholar
  45. 45.
    Braga LL, Ninomiya H, McCoy JJ, Eacker S, Wiedmer T, Pham C, Wood S, Sims PJ, Petri WA Jr (1992) Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. J Clin Invest 90(3):1131–1137. doi: 10.1172/JCI115931 PubMedCentralPubMedGoogle Scholar
  46. 46.
    Reed SL, Gigli I (1990) Lysis of complement-sensitive Entamoeba histolytica by activated terminal complement components. Initiation of complement activation by an extracellular neutral cysteine proteinase. J Clin Invest 86(6):1815–1822. doi: 10.1172/JCI114911 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Reed SL, Ember JA, Herdman DS, DiScipio RG, Hugli TE, Gigli I (1995) The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J Immunol 155(1):266–274PubMedGoogle Scholar
  48. 48.
    González E, Villegas-Sepúlveda N, Bonilla R, García G, Mendoza G, Ramos F, Morán P, Valadez A, Limón A, Melendro EI, Ximénez C (2007) Cloning and expression of Entamoeba histolytica calreticulin gene. In: 5th International congress on tropical medicine and international health, MEDIMOND S.r.l. international proceedings, pp 43–49Google Scholar
  49. 49.
    González E, de Leon M del C, Meza I, Ocadiz-Delgado R, Gariglio P, Silva-Olivares A, Galindo-Gómez S, Shibayama M, Morán P, Valadez A, Limón A, Rojas L, Hernández EG, Cerritos R, Ximenez C (2011) Entamoeba histolytica calreticulin: an endoplasmic reticulum protein expressed by trophozoites into experimentally induced amoebic liver abscesses. Parasitol Res 108(2):439–449. doi: 10.1007/s00436-010-2085-6 PubMedGoogle Scholar
  50. 50.
    Ferreira V, Molina MC, Valck C, Rojas A, Aguilar L, Ramírez G, Schwaeble W, Ferreira A (2004) Role of calreticulin from parasites in its interaction with vertebrate hosts. Mol Immunol 40(17):1279–1291. doi: 10.1016/j.molimm.2003.11.018 PubMedGoogle Scholar
  51. 51.
    Virk KJ, Ganguly NK, Prasad RN, Dilawari JB, Mahajan RC (1990) Kupffer cell functions during intestinal amoebiasis in guinea pigs. J Gastroenterol Hepatol 5(5):518–524. doi: 10.1111/j.1440-1746.1990.tb01434.x PubMedGoogle Scholar
  52. 52.
    Lotter H, González-Roldán N, Lindner B, Winau F, Isibasi A, Moreno-Lafont M, Ulmer AJ, Holst O, Tannich E, Jacobs T (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5(5):e1000434. doi: 10.1371/journal.ppat.1000434 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Watanabe T, Katsukura H, Chiba T, Kita T, Wakatsuki Y (2007) Periportal and sinusoidal liver dendritic cells suppressing T helper type 1-mediated hepatitis. Gut 56(10):1445–1451. doi: 10.1136/gut.2007.121251 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Wehner R, Dietze K, Bachmann M, Schmitz M (2011) The bidirectional crosstalk between human dendritic cells and natural killer cells. J Innate Immun 3(3):258–263. doi: 10.1159/000323923 PubMedGoogle Scholar
  55. 55.
    Lotter H, Jacobs T, Gaworski I, Tannich E (2006) Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect Immun 74(1):118–124. doi: 10.1128/IAI.74.1.118-124.2006 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Haque R, Mondal D, Shu J, Roy S, Kabir M, Davis AN, Duggal P, Petri WA Jr (2007) Correlation of interferon-gamma production by peripheral blood mononuclear cells with childhood malnutrition and susceptibility to amebiasis. Am J Trop Med Hyg 76(2):340–344PubMedGoogle Scholar
  57. 57.
    Guo X, Roberts MR, Becker SM, Podd B, Zhang Y, Chua SC, Myers MG, Duggal P, Houpt ER, Petri WA (2011) Leptin signalling in intestinal epithelium mediates resistance to enteric infection by Entamoeba histolytica. Mucosal Immunol 4(3):294–303. doi: 10.1038/mi.2010.76 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Ghardirian E, Meerovitch E (1981) Effect of splenectomy on the size of amoebic liver abscesses and metastatic foci in hamsters. Infect Immun 31(2):571–576, Google Scholar
  59. 59.
    Ghardirian E, Meerovitch E (1981) Effect of immunosuppression on the size and metastasis of amoebic liver abscesses in hamsters. Parasite Immunol 3:329–338. doi: 10.1111/j.1365-3024.1981.tb00411.x Google Scholar
  60. 60.
    Talamás-Rohana P, Schlie-Guzmán MA, Hernández-Ramírez VI, Rosales-Encina JL (1995) T-cell suppression and selective in vivo activation of TH2 subpopulation by Entamoeba histolytica 220-kilodalton lectin. Infect Immun 63(10):3953–3958, PubMedCentralPubMedGoogle Scholar
  61. 61.
    Campbell D, Chadee K (1997) Interleukin (IL)-2, IL-4, and tumour necrosis factor-alpha responses during Entamoeba histolytica liver abscess development in gerbils. J Infect Dis 175:1176–1183. doi: 10.1086/520355 PubMedGoogle Scholar
  62. 62.
    Calderón J, de Lourdes Muñoz M, Acosta HM (1980) Surface redistribution and release of antibody-induced caps in entamoebae. J Exp Med 151(1):184–193. doi: 10.1084/jem.151.1.184 PubMedGoogle Scholar
  63. 63.
    Haque R, Duggal P, Ali IM, Hossain MB, Mondal D, Sack RB, Farr BM, Beaty TH, Petri WA Jr (2002) Innate and acquired resistance to amebiasis in Bangladeshi children. J Infect Dis 186(4):547–552PubMedGoogle Scholar
  64. 64.
    Haque R, Mondal D, Duggal P, Kabir M, Roy S, Farr BM, Sack RB, Petri WA Jr (2006) Entamoeba histolytica infection in children and protection from subsequent amebiasis. Infect Immun 74(2):904–909PubMedCentralPubMedGoogle Scholar
  65. 65.
    Kelsall BL, Ravdin JI (1993) Degradation of human IgA by Entamoeba histolytica. J Infect Dis 168(5):1319–1322. doi: 10.1093/infdis/168.5.1319 PubMedGoogle Scholar
  66. 66.
    Tran VQ, Herdman DS, Torian BE, Reed SL (1998) The neutral cysteine proteinase of Entamoeba histolytica degrades IgG and prevents its binding. J Infect Dis 177(2):508–511. doi: 10.1086/517388 PubMedGoogle Scholar
  67. 67.
    Ayeh-Kumi PF, Ali IM, Lockhart LA, Gilchrist CA, Petri WA Jr, Haque R (2001) Entamoeba histolytica: genetic diversity of clinical isolates from Bangladesh as demonstrated by polymorphisms in the serine-rich gene. Exp Parasitol 99(2):80–88. doi: 10.1006/expr.2001.4652 PubMedGoogle Scholar
  68. 68.
    Ali IK, Haque R, Alam F, Kabir M, Siddique A, Petri WA Jr (2012) Evidence for a link between locus R-R sequence type and outcome of infection with Entamoeba histolytica. Clin Microbiol Infect 18(7):E235–E237. doi: 10.1111/j.1469-0691.2012.03826.x PubMedCentralPubMedGoogle Scholar
  69. 69.
    Huston CD (2004) Parasite and host contributions to the pathogenesis of amebic colitis. Trends Parasitol 20(1):23–26. doi: 10.1016/ PubMedGoogle Scholar
  70. 70.
    Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25(2):187–191. doi: 10.1038/76048 PubMedGoogle Scholar
  71. 71.
    Schröder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5(3):156–164. doi: 10.1016/S1473-3099(05)01308-3 PubMedGoogle Scholar
  72. 72.
    Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 114(5):347–360. doi: 10.1042/CS20070214 Google Scholar
  73. 73.
    Netea MG, Wijmenga C, O’Neill LA (2012) Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol 13(6):535–542. doi: 10.1038/ni.2284 PubMedGoogle Scholar
  74. 74.
    Greene JA, Moormann AM, Vulule J, Bockarie MJ, Zimmerman PA, Kazura JW (2009) Toll-like receptor polymorphisms in malaria-endemic populations. Malar J 8:50. doi: 10.1186/1475-2875-8-50 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Zakeri S, Pirahmadi S, Mehrizi AA, Djadid ND (2011) Genetic variation of TLR-4, TLR-9 and TIRAP genes in Iranian malaria patients. Malar J 10:77. doi: 10.1186/1475-2875-10-77 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Weitzel T, Zulantay I, Danquah I, Hamann L, Schumann RR, Apt W, Mockenhaupt FP (2012) Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile. Am J Trop Med Hyg 86(2):229–232. doi: 10.4269/ajtmh.2012.11-0539 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Tuite A, Gros P (2006) The impact of genomics on the analysis of host resistance to infectious disease. Microbes Infect 8(6):1647–1653. doi: 10.1016/j.micinf.2005.11.016 PubMedGoogle Scholar
  78. 78.
    Duggal P, Guo X, Haque R, Peterson KM, Ricklefs S, Mondal D, Alam F, Noor Z, Verkerke HP, Marie C, Leduc CA, Chua SC Jr, Myers MG Jr, Leibel RL, Houpt E, Gilchrist CA, Sher A, Porcella SF, Petri WA Jr (2011) A mutation in the leptin receptor is associated with Entamoeba histolytica infection in children. J Clin Invest 121(3):1191–1198PubMedCentralPubMedGoogle Scholar
  79. 79.
    Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature (Lond) 352(6336):595–600. doi: 10.1038/352595a0 Google Scholar
  80. 80.
    May J, Kremsner PG, Milovanovic D, Schnittger L, Löliger CC, Bienzle U, Meyer CG (1998) HLA-DP control of human Schistosoma haematobium infection. Am J Trop Med Hyg 59(2):302–306PubMedGoogle Scholar
  81. 81.
    Duggal P, Haque R, Roy S, Mondal D, Sack RB, Farr BM, Beaty TH, Petri WA Jr (2004) Influence of human leukocyte antigen class II alleles on susceptibility to Entamoeba histolytica infection in Bangladeshi children. J Infect Dis 189(3):520–526. doi: 10.1086/381272 PubMedGoogle Scholar
  82. 82.
    Arellano J, Isibasi A, Miranda R, Higuera F, Granados J, Kretschmer RR (1987) HLA antigens associated to amoebic abscess of the liver in Mexican mestizos. Parasite Immunol 9(6):757–760. doi: 10.1111/j.1365-3024.1987.tb00543.x PubMedGoogle Scholar
  83. 83.
    Arellano J, Granados J, Pérez E, Félix C, Kretschmer RR (1991) Increased frequency of HLA-DR3 and complotype SC01 in Mexican mestizo patients with amoebic abscess of the liver. Parasite Immunol 13(1):23–29. doi: 10.1111/j.1365-3024.1991.tb00260.x PubMedGoogle Scholar
  84. 84.
    Arellano J, Granados J, Frenk P, López-Osuna M, Santos I, Kretschmer RR (1992) Increased frequency of HLA-DR3 in Mexican mestizo pediatric patients with amebic liver abscess (ALA). Arch Med Res 23(2):269–270PubMedGoogle Scholar
  85. 85.
    Arellano J, Peŕez-Rodríguez M, López-Osuna M, Velázquez JR, Granados J, Justiniani N, Santos JI, Madrazo A, Muñoz L, Kretschmer R (1996) Increased frequency of HLA-DR3 and complotype SCO1 in Mexican mestizo children with amoebic abscess of the liver. Parasite Immunol 18(10):491–498. doi: 10.1046/j.1365-3024.1996.d01-16.x PubMedGoogle Scholar
  86. 86.
    Valdez E, del Carmen Martínez M, Gómez A, Cedillo R, Arellano J, Pérez ME, Ramos F, Morán P, González E, Valenzuela O, Melendro EI, Ramiro M, Kretschmer R, Muñoz O, Ximénez C (1999) HLA characterization in adult asymptomatic cyst passers of Entamoeba histolytica/E. dispar. Parasitol Res 85(10):833–836. doi: 10.1007/s004360050641 PubMedGoogle Scholar
  87. 87.
    Tsutsumi V, Shibayama M (2006) Experimental amebiasis: a selected review of some in vivo models. Arch Med Res 37(2):210–220. doi: 10.1016/j.arcmed.2005.09.011 PubMedGoogle Scholar
  88. 88.
    Girard-Misguich F, Cognie J, Delgado-Ortega M, Berthon P, Rossignol C, Larcher T, Melo S, Bruel T, Guibon R, Chérel Y, Sarradin P, Salmon H, Guillén N, Meurens F (2011) Towards the establishment of a porcine model to study human amebiasis. PLoS One 6(12):e28795. doi: 10.1371/journal.pone.0028795 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Girard-Misguich F, Delgado-Ortega M, Berthon P, Rossignol C, Larcher T, Bruel T, Guibon R, Guillén N, Meurens F (2012) Porcine colon explants in the study of innate immune response to Entamoeba histolytica. Vet Immunol Immunopathol 145(3-4):611–617. doi: 10.1016/j.vetimm.2012.01.002 PubMedGoogle Scholar
  90. 90.
    Bansal D, Ave P, Kerneis S, Frileux P, Boché O, Baglin AC, Dubost G, Leguern AS, Prevost MC, Bracha R, Mirelman D, Guillén N, Labruyère E (2009) An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis. PLoS Negl Trop Dis 3(11):e551. doi: 10.1371/journal.pntd.0000551 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Seydel KB, Li E, Swanson PE, Stanley SL Jr (1997) Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis. Infect Immun 65(5):1631–1639, PubMedCentralPubMedGoogle Scholar
  92. 92.
    Stenson WF, Zhang Z, Riehl T, Stanley SL Jr (2001) Amebic infection in the human colon induces cyclooxygenase-2. Infect Immun 69(5):3382–3388. doi: 10.1128/IAI.69.5.3382-3388.2001 PubMedCentralPubMedGoogle Scholar
  93. 93.
    Seydel KB, Li E, Zhang Z, Stanley SL Jr (1998) Epithelial cell-initiated inflammation plays a crucial role in early tissue damage in amebic infection of human intestine. Gastroenterology 115(6):1446–1453PubMedGoogle Scholar
  94. 94.
    Kammanadiminti SJ, Chadee K (2006) Suppression of NF-kappaB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281(36):26112–26120PubMedGoogle Scholar
  95. 95.
    Carranza-Rosales P, Santiago-Mauricio MG, Guzmán-Delgado NE, Vargas-Villarreal J, Lozano-Garza G, Ventura-Juárez J, Balderas-Rentería I, Morán-Martínez J, Gandolfi AJ (2010) Precision-cut hamster liver slices as an ex vivo model to study amoebic liver abscess. Exp Parasitol 126(2):117–125. doi: 10.1016/j.exppara.2010.04.005 PubMedGoogle Scholar
  96. 96.
    Bäckhed F (2012) Host responses to the human microbiome. Nutr Rev 70(suppl 1):S14–S17. doi: 10.1111/j.1753-4884.2012.00496.x PubMedGoogle Scholar
  97. 97.
    Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature (Lond) 469(7331):543–547. doi: 10.1038/nature09646 Google Scholar
  98. 98.
    Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149(7):1578–1593. doi: 10.1016/j.cell.2012.04.037 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature (Lond) 489(7415):220–230. doi: 10.1038/nature11550 Google Scholar
  100. 100.
    Littman DR, Pamer EG (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10(4):311–323. doi: 10.1016/j.chom.2011.10.004 PubMedCentralPubMedGoogle Scholar
  101. 101.
    van de Pavert SA, Mebius RE (2010) New insights into the development of lymphoid tissues. Nat Rev Immunol 10(9):664–674. doi: 10.1038/nri2832 PubMedGoogle Scholar
  102. 102.
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Müller W, Sparwasser T, Förster R, Pabst O (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34(2):237–246. doi: 10.1016/j.immuni.2011.01.016 PubMedGoogle Scholar
  103. 103.
    Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635. doi: 10.1016/j.immuni.2009.05.002 PubMedGoogle Scholar
  104. 104.
    Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature (Lond) 489(7415):231–241. doi: 10.1038/nature11551 Google Scholar
  105. 105.
    Kelly D, Mulder IE (2012) Microbiome and immunological interactions. Nutr Rev 70(suppl 1):S18–S30. doi: 10.1111/j.1753-4887.2012.00498.x PubMedGoogle Scholar
  106. 106.
    Sonnenberg GF, Artis D (2012) Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity 37(4):601–610. doi: 10.1016/j.immuni.2012.10.003 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV (2011) The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334(6053):255–258. doi: 10.1126/science.1209791 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensing. Nature (Lond) 422(6931):522–526. doi: 10.1038/nature01520 Google Scholar
  109. 109.
    Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665. doi: 10.1126/science.1091334 PubMedGoogle Scholar
  110. 110.
    Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105(52):20858–20863. doi: 10.1073/pnas.0808723105 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241. doi: 10.1016/j.cell.2004.07.002 PubMedGoogle Scholar
  112. 112.
    Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4):677–689. doi: 10.1016/j.immuni.2009.08.020 PubMedGoogle Scholar
  113. 113.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341. doi: 10.1126/science.1198469 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337(6099):1228–1231. doi: 10.1126/science.1219385 PubMedGoogle Scholar
  115. 115.
    Bancroft AJ, Hayes KS, Grencis RK (2012) Life on the edge: the balance between macrofauna, microflora and host immunity. Trends Parasitol 28(3):93–98. doi: 10.1016/ PubMedGoogle Scholar
  116. 116.
    Harp JA, Chen W, Harmsen AG (1992) Resistance of severe combined immunodeficient mice to infection with Cryptosporidium parvum: the importance of intestinal microflora. Infect Immun 60(9):3509–3512PubMedCentralPubMedGoogle Scholar
  117. 117.
    Phillips BP, Wolfe PA, Rees CW, Gordon HA, Wright WH, Reyniers JA (1955) Studies on the ameba–bacteria relationship in amebiasis; comparative results of the intracecal inoculation of germfree, monocontaminated, and conventional guinea pigs with Entamoeba histolytica. Am J Trop Med Hyg 4(4):675–692PubMedGoogle Scholar
  118. 118.
    Galván-Moroyoqui JM, Del Carmen Domínguez-Robles M, Franco E, Meza I (2008) The interplay between Entamoeba and enteropathogenic bacteria modulates epithelial cell damage. PLoS Negl Trop Dis 2(7):e266. doi: 10.1371/journal.pntd.0000266 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Galván-Moroyoqui JM, Del Carmen Domínguez-Robles M, Meza I (2011) Pathogenic bacteria prime the induction of Toll-like receptor signalling in human colonic cells by the Gal/GalNAc lectin carbohydrate recognition domain of Entamoeba histolytica. Int J Parasitol 41(10):1101–1112. doi: 10.1016/j.ijpara.2011.06.003 PubMedGoogle Scholar
  120. 120.
    Phillips BP (1973) Entamoeba histolytica: concurrent irreversible loss of infectivity-pathogenicity and encystment potential after prolonged maintenance in axenic culture in vitro. Exp Parasitol 34(2):163–167. doi: 10.1016/0014-4894(73)90075-1 PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Cecilia Ximenez
    • 1
  • Oswaldo Partida
    • 1
  • Miriam Nieves
    • 1
  • Eric Hernandez
    • 1
  • Patricia Moran
    • 1
  • Alicia Valadez
    • 1
  • Enrique Gonzalez
    • 1
  • Rene Cerritos
    • 1
  • Liliana Rojas
    • 1
  1. 1.Department of Experimental Medicine, Faculty of MedicineNational University of Mexico (UNAM)Mexico CityMexico

Personalised recommendations