Amebiasis pp 459-470 | Cite as

Host Immunity and Tissue Destruction During Liver Abscess Formation



Amebic liver abscess (ALA) is a severe focal destruction of liver tissue caused by infection with the parasite Entamoeba histolytica (E. histolytica). In the past, tissue damage has been mainly attributed to pathogenicity factors of the parasite. However, the massive presence of innate immune cells raises the question whether host cells contribute to the destruction of the liver tissue as well. In this chapter, we discuss the role of neutrophils, monocytes, and macrophages during ALA in animal models for the disease. In brief, neutrophils contribute only partially to the observed pathology, whereas inflammatory monocytes and resident liver macrophages are substantially involved in tissue damage seen during E. histolytica infection. Therefore, we conclude beyond parasite-specific effector molecules, immune pathological mechanisms of the host substantially contribute to the development of ALA.


SCID Mouse Entamoeba Histolytica Immunocompetent Mouse Inflammatory Monocyte Amebic Liver Abscess 



The research presented in this chapter was supported by grants from the Deutsche Forschungsgemeinschaft SFB 841 (“Liver inflammation: Infection, Immune Regulation and Consequences”). E.H. is supported by studentships from the SFB 841, Hamburg, Germany. H.B. is supported by the Werner-Otto Stiftung, Hamburg, Germany. H.L. is supported by and holds a group leadership in the Department of Molecular Parasitology from the Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. We thank Claudia Marggraff for the excellent immunohistology of ALA.


  1. 1.
    Leippe M (1997) Amoebapores. Parasitol Today 13:178–183PubMedCrossRefGoogle Scholar
  2. 2.
    Bruchhaus I, Loftus BJ, Hall N, Tannich E (2003) The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. Eukaryot Cell 2:501–509PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Stanley SL Jr, Zhang T, Rubin D, Li E (1995) Role of the Entamoeba histolytica cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice. Infect Immun 63:1587–1590PubMedCentralPubMedGoogle Scholar
  4. 4.
    Nowak N, Lotter H, Tannich E, Bruchhaus I (2004) Resistance of Entamoeba histolytica to the cysteine proteinase inhibitor E64 is associated with secretion of pro-enzymes and reduced pathogenicity. J Biol Chem 279:38260–38266PubMedCrossRefGoogle Scholar
  5. 5.
    Hellberg A, Nickel R, Lotter H, Tannich E, Bruchhaus I (2001) Overexpression of cysteine proteinase 2 in Entamoeba histolytica or Entamoeba dispar increases amoeba-induced monolayer destruction in vitro but does not augment amoebic liver abscess formation in gerbils. Cell Microbiol 3:13–20PubMedCrossRefGoogle Scholar
  6. 6.
    Tillack M, Nowak N, Lotter H, Bracha R, Mirelman D et al (2006) Increased expression of the major cysteine proteinases by stable episomal transfection underlines the important role of EhCP5 for the pathogenicity of Entamoeba histolytica. Mol Biochem Parasitol 149:58–64PubMedCrossRefGoogle Scholar
  7. 7.
    Tillack M, Biller L, Irmer H, Freitas M, Gomes MA et al (2007) The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes. BMC Genomics 8:170PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Davis PH, Chen M, Zhang X, Clark CG, Townsend RR et al (2009) Proteomic comparison of Entamoeba histolytica and Entamoeba dispar and the role of E. histolytica alcohol dehydrogenase 3 in virulence. PLoS Negl Trop Dis 3:e415PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Clark CG, Alsmark UC, Tazreiter M, Saito-Nakano Y, Ali V et al (2007) Structure and content of the Entamoeba histolytica genome. Adv Parasitol 65:51–190PubMedCrossRefGoogle Scholar
  10. 10.
    Blessmann J, Ali IK, Nu PA, Dinh BT, Viet TQ et al (2003) Longitudinal study of intestinal Entamoeba histolytica infections in asymptomatic adult carriers. J Clin Microbiol 41:4745–4750PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Acuna-Soto R, Maguire JH, Wirth DF (2000) Gender distribution in asymptomatic and invasive amebiasis. Am J Gastroenterol 95:1277–1283PubMedCrossRefGoogle Scholar
  12. 12.
    Ventura-Juárez J, Jarillo-Luna RA, Fuentes-Aguilar E, Pineda-Vázquez A, Munoz-Fernández L et al (2003) Human amoebic hepatic abscess: in situ interactions between trophozoites, macrophages, neutrophils and T cells. Parasite Immunol 25:503–511PubMedCrossRefGoogle Scholar
  13. 13.
    Shibayama M, Campos-Rodriguez R, Ramirez-Rosales A, Martinez-Palomo A, Tsutsumi V (1997) Morphological analysis of amebic liver abscess produced by intraperitoneal inoculation of Entamoeba histolytica trophozoites in hamsters. Arch Med Res 28:207–210PubMedGoogle Scholar
  14. 14.
    Tsutsumi V, Mena-Lopez R, Anaya-Velazquez F, Martinez-Palomo A (1984) Cellular bases of experimental amebic liver abscess formation. Am J Pathol 117:81–91PubMedCentralPubMedGoogle Scholar
  15. 15.
    Chadee K, Meerovitch E (1984) The pathogenesis of experimentally induced amebic liver abscess in the gerbil (Meriones unguiculatus). Am J Pathol 117:71–80PubMedCentralPubMedGoogle Scholar
  16. 16.
    Cieslak PR, Virgin HWT, Stanley SL Jr (1992) A severe combined immunodeficient (SCID) mouse model for infection with Entamoeba histolytica. J Exp Med 176:1605–1609PubMedCrossRefGoogle Scholar
  17. 17.
    Biller L, Schmidt H, Krause E, Gelhaus C, Matthiesen J et al (2009) Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. Proteomics 9:4107–4120PubMedCrossRefGoogle Scholar
  18. 18.
    Lotter H, Jacobs T, Gaworski I, Tannich E (2006) Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease. Infect Immun 74:118–124PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Matthiesen J, Bar AK, Bartels AK, Marien D, Ofori S et al (2013) Overexpression of specific cysteine peptidases confers pathogenicity to a nonpathogenic Entamoeba histolytica clone. MBio. doi: 10.1128/mBio.00072-13 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Cohn ZA, Hirsch JG (1960) The influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes. J Exp Med 112:1015–1022PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Guerrant RL, Brush J, Ravdin JI, Sullivan JA, Mandell GL (1981) Interaction between Entamoeba histolytica and human polymorphonuclear neutrophils. J Infect Dis 143:83–93PubMedCrossRefGoogle Scholar
  23. 23.
    Denis M, Chadee K (1989) Human neutrophils activated by interferon-gamma and tumour necrosis factor-alpha kill Entamoeba histolytica trophozoites in vitro. J Leukoc Biol 46:270–274PubMedGoogle Scholar
  24. 24.
    Mainardi CL, Dixit SN, Kang AH (1980) Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J Biol Chem 255:5435–5441PubMedGoogle Scholar
  25. 25.
    Mainardi CL, Hasty DL, Seyer JM, Kang AH (1980) Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J Biol Chem 255:12006–12010PubMedGoogle Scholar
  26. 26.
    Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439PubMedCrossRefGoogle Scholar
  27. 27.
    Salata RA, Ravdin JI (1986) The interaction of human neutrophils and Entamoeba histolytica increases cytopathogenicity for liver cell monolayers. J Infect Dis 154:19–26PubMedCrossRefGoogle Scholar
  28. 28.
    Shi C, Hohl TM, Leiner I, Equinda MJ, Fan X et al (2011) Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol 187:5293–5298PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Seydel KB, Zhang T, Stanley SL Jr (1997) Neutrophils play a critical role in early resistance to amebic liver abscesses in severe combined immunodeficient mice. Infect Immun 65:3951–3953PubMedCentralPubMedGoogle Scholar
  31. 31.
    Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339PubMedCrossRefGoogle Scholar
  32. 32.
    Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26:1175–1186PubMedCrossRefGoogle Scholar
  33. 33.
    Kolios G, Valatas V, Kouroumalis E (2006) Role of Kupffer cells in the pathogenesis of liver disease. World J Gastroenterol 12:7413–7420PubMedCentralPubMedGoogle Scholar
  34. 34.
    Kinoshita M, Uchida T, Sato A, Nakashima M, Nakashima H et al (2010) Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice. J Hepatol 53:903–910PubMedCrossRefGoogle Scholar
  35. 35.
    Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T et al (2005) The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201:1615–1625PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Sanchez-Madrid F, Simon P, Thompson S, Springer TA (1983) Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1. J Exp Med 158:586–602PubMedCrossRefGoogle Scholar
  37. 37.
    Smith MJ, Koch GL (1987) Differential expression of murine macrophage surface glycoprotein antigens in intracellular membranes. J Cell Sci 87(Pt 1):113–119PubMedGoogle Scholar
  38. 38.
    Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I et al (2007) Role of the Kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci 96:2–15PubMedCrossRefGoogle Scholar
  39. 39.
    Nakashima H, Kinoshita M, Nakashima M, Habu Y, Shono S et al (2008) Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice. Hepatology 48:1979–1988PubMedCrossRefGoogle Scholar
  40. 40.
    Yang R, Zou X, Koskinen ML, Tenhunen J (2012) Ethyl pyruvate reduces liver injury at early phase but impairs regeneration at late phase in acetaminophen overdose. Crit Care 16:R9PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Ghadirian E, Meerovitch E, Hartmann DP (1980) Protection against amebic liver abscess in hamsters by means of immunization with amebic antigen and some of its fractions. Am J Trop Med Hyg 29:779–784PubMedGoogle Scholar
  42. 42.
    Denis M, Chadee K (1989) Cytokine activation of murine macrophages for in vitro killing of Entamoeba histolytica trophozoites. Infect Immun 57:1750–1756PubMedCentralPubMedGoogle Scholar
  43. 43.
    Ghadirian E, Denis M (1992) In vivo activation of macrophages by IFN-gamma to kill Entamoeba histolytica trophozoites in vitro. Parasite Immunol 14:397–404PubMedCrossRefGoogle Scholar
  44. 44.
    Ghadirian E, Salimi A (1993) In vitro effect of recombinant interferon gamma in combination with LPS on amoebicidal activity of murine Kupffer cells. Immunobiology 188:203–219PubMedCrossRefGoogle Scholar
  45. 45.
    Denis M, Ghadirian E (1992) Activated mouse macrophages kill Entamoeba histolytica trophozoites by releasing reactive nitrogen intermediates. Microb Pathog 12:193–198PubMedCrossRefGoogle Scholar
  46. 46.
    Serbina NV, Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311–317PubMedCrossRefGoogle Scholar
  47. 47.
    Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:480–483PubMedCrossRefGoogle Scholar
  48. 48.
    Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82PubMedCrossRefGoogle Scholar
  49. 49.
    Serbina NV, Jia T, Hohl TM, Pamer EG (2008) Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol 26:421–452PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Bosschaerts T, Guilliams M, Stijlemans B, Morias Y, Engel D et al (2010) Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-gamma and MyD88 signaling. PLoS Pathog 6:e1001045PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Aldridge JR Jr, Moseley CE, Boltz DA, Negovetich NJ, Reynolds C et al (2009) TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci USA 106:5306–5311PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Karlmark KR, Wasmuth HE, Trautwein C, Tacke F (2008) Chemokine-directed immune cell infiltration in acute and chronic liver disease. Expert Rev Gastroenterol Hepatol 2:233–242PubMedCrossRefGoogle Scholar
  54. 54.
    Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M et al (2012) Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61:416–426PubMedCrossRefGoogle Scholar
  55. 55.
    Helk E, Bernin H, Ernst T, Ittrich H, Jacobs T et al (2013) TNF-alpha-mediated liver destruction by Kupffer cells and Ly6Chi monocytes during Entamoeba histolytica infection. PLoS Pathog 9:e1003096PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Dunay IR, Damatta RA, Fux B, Presti R, Greco S et al (2008) Gr1(+) inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29:306–317PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756PubMedCrossRefGoogle Scholar
  58. 58.
    Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119:651–665PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Quintanar-Quintanar ME, Jarillo-Luna A, Rivera-Aguilar V, Ventura-Juarez J, Tsutsumi V et al (2004) Immunosuppressive treatment inhibits the development of amebic liver abscesses in hamsters. Med Sci Monit 10:BR317–BR324PubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Molecular ParasitologyBernhard Nocht Institute for Tropical MedicineHamburgGermany

Personalised recommendations