Skip to main content

Metabolomic Analysis of Entamoeba Biology

  • Chapter
  • First Online:
Amebiasis

Abstract

Whole genome or transcriptome information provides the annotation of genes and proteins and predicts metabolic pathways, but unequivocal demonstration of the functionalities of the enzymes and metabolic pathways remains challenging. Because nearly 56 % of the Entamoeba histolytica genes remain unannotated, correlative “omics” analyses of genomics, transcriptomics, proteomics, and biochemical metabolic profiling can be useful in uncovering new, or poorly understood, metabolisms and metabolic pathways. Current understanding of metabolic pathways constructed by genes and pathway predictions are based on homology search of the genome, transcriptome, and proteome databases and conventional biochemical demonstration of enzymatic activities. However, it is well known that there are large disparities between the pathways predicted in silico and the pathways actually operating in vivo. Thus, it is important to demonstrate the presence and kinetics (flow or flux) of the metabolites involved in the pathways. To this end, a variety of analytical methods and platforms for metabolomics and metabolite profiling has been developed, in which intracellular and extracellular metabolites can be selectively or globally analyzed. Global metabolomics analysis of Entamoeba histolytica under environmental stress conditions, in different life-cycle stages, and heterogenic (i.e., clinical) isolates, should potentially uncover unpredictable metabolic pathways, interaction and regulation of pathways, and also directly demonstrate the role of individual genes on metabolic pathways, and thus helps our understanding of the physiological and biological roles of metabolic pathways and a network of regulatory interactions between them. Metabolomics of Entamoeba is still in its infancy and only a handful of studies have been reported thus far. In this chapter, we summarize a few examples of the application of metabolomics, combined with transcriptomic analysis, to the analysis of global changes in metabolism in response to three representative physiological conditions: encystation, oxidative stress, and cysteine deprivation. We also discuss future applications of metabolomics to understand the biology and pathogenesis of E. histolytica. Furthermore, because major metabolic differences between the parasite and its host provide rational drug targets, which are either selectively present in pathogens or highly divergent from humans, multi-“omics” approaches, including metabolomics, should lead to important discoveries of unique exploitable metabolic networks crucial to develop new effective drugs against amebiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–816

    Article  CAS  PubMed  Google Scholar 

  2. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J Bacteriol 180:5109–5116

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Trauger SA, Kalisak E, Kalisiak J, Morita H, Weinberg MV, Menon AL, Poole FL II, Adams MW, Siuzdak G (2008) Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J Proteome Res 7:1027–1035

    Article  CAS  PubMed  Google Scholar 

  6. Rabinowitz JD (2007) Cellular metabolomics of Escherichia coli. Expert Rev Proteomics 4:187–198

    Article  CAS  PubMed  Google Scholar 

  7. Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci USA 103:19302–19307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T et al (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2980–2998

    Article  CAS  PubMed  Google Scholar 

  9. Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW (2007) Shotgun metabolomics approach for the analysis of negatively charged water-soluble cellular metabolites from mouse heart tissue. Anal Chem 79:6629–6640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pedersen KS, Kristensen TN, Loeschcke V, Petersen BO, Duus JO, Nielsen NC, Malmendal A (2008) Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics 180:1233–1243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Khoo SH, Al-Rubeai M (2007) Metabolomics as a complementary tool in cell culture. Biotechnol Appl Biochem 47:71–84

    Article  CAS  PubMed  Google Scholar 

  12. Roessner U, Bowne J (2009) What is metabolomics all about? Biotechniques 46:363–365

    Article  CAS  PubMed  Google Scholar 

  13. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435–25442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zamboni N, Fendt SM, Rühl M, Sauer U (2009) (13)C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  CAS  PubMed  Google Scholar 

  16. Blank LM, Kuepfer L, Sauer U (2005) Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biol 6:R49

    Article  PubMed Central  PubMed  Google Scholar 

  17. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2:e132

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kwon YK, Lu W, Melamud E, Khanam N, Bognar A, Rabinowitz JD (2008) A domino effect in antifolate drug action in Escherichia coli. Nat Chem Biol 4:602–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kalisiak J, Trauger SA, Kalisiak E, Morita H, Fokin VV, Adams MW, Sharpless KB, Siuzdak G (2009) Identification of a new endogenous metabolite and the characterization of its protein interactions through an immobilization approach. J Am Chem Soc 131:378–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature (Lond) 433:865–868

    Article  CAS  Google Scholar 

  21. Anderson IJ, Loftus BJ (2005) Entamoeba histolytica: observations on metabolism based on the genome sequence. Exp Parasitol 110:173–177

    Article  CAS  PubMed  Google Scholar 

  22. Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV (2010) New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis 4:e716

    Article  PubMed Central  PubMed  Google Scholar 

  23. Weinbach EC, Diamond LS (1974) Entamoeba histolytica. I. Aerobic metabolism. Exp Parasitol 35:232–243

    Article  CAS  PubMed  Google Scholar 

  24. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    Article  CAS  PubMed  Google Scholar 

  25. Reeves RE (1984) Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol 23:105–142

    Article  CAS  PubMed  Google Scholar 

  26. Müller M (1998) Enzymes and compartmentation of core energy metabolism of anaerobic protists: a special case in eukaryotic evolution. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among protozoa. Kluwer Academic, Dordrecht, pp 109–132

    Google Scholar 

  27. Nozaki T, Ali V, Tokoro M (2005) Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 60:1–99

    Article  PubMed  Google Scholar 

  28. Husain A, Sato D, Jeelani G, Mi-ichi F, Ali V, Suematsu M, Soga T, Nozaki T (2010) Metabolome analysis revealed increase in S-methylcysteine and phosphatidyl isopropanolamine synthesis upon l-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. J Biol Chem 285:39160–39170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jeelani G, Sato D, Husain A, Escueta-de Cadiz A, Sugimoto M, Soga T, Suematsu M, Nozaki T (2012) Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation. PLoS One 7:e37740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Husain A, Sato D, Jeelani G, Soga T, Nozaki T (2012) Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis 6:e1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bharti SK, Jaiswal V, Ghoshal U, Ghoshal UC, Baijal SS, Roy R, Khetrapal CL (2012) Metabolomic profiling of amoebic and pyogenic liver abscesses: an in vitro NMR study. Metabolomics 8:540–555

    Article  CAS  Google Scholar 

  32. Saavedra E, Encalada R, Pineda E, Jasso-Chavez R, Moreno-Sanchez R (2005) Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J 272:1767–1783

    Article  CAS  PubMed  Google Scholar 

  33. Saavedra E, Marín-Hernández A, Encalada R, Olivos A, Mendoza-Hernández G, Moreno-Sánchez R (2007) Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. FEBS J 274:4922–4940

    Article  CAS  PubMed  Google Scholar 

  34. Moreno-Sánchez R, Encalada R, Marín-Hernández A, Saavedra E (2008) Experimental validation of metabolic pathway modeling. An illustration with glycolytic segments from Entamoeba histolytica. FEBS J 275:3454–3469

    Article  PubMed  Google Scholar 

  35. Montalvo FE, Reeves RE, Warren LG (1971) Aerobic and anaerobic metabolism in Entamoeba histolytica. Exp Parasitol 30:249–256

    Article  CAS  PubMed  Google Scholar 

  36. Bakker-Grunwald T, Martin JB, Klein G (1995) Characterization of glycogen and amino acid pool of Entamoeba histolytica by 13C-NMR spectroscopy. J Eukaryot Microbiol 42:346–349

    Article  CAS  PubMed  Google Scholar 

  37. Zuo X, Coombs GH (1995) Amino acid consumption by the parasitic, amoeboid protists Entamoeba histolytica and E. invadens. FEMS Microbiol Lett 130:253–258

    Article  CAS  PubMed  Google Scholar 

  38. McConnachie EW (1969) The morphology, formation and development of cysts of Entamoeba. Parasitology 59:41–53

    Article  CAS  PubMed  Google Scholar 

  39. Arroyo-Begovich A, Carabez-Trejo A, Ruiz-Herrera J (1980) Identification of the structural component in the cyst wall of Entamoeba invadens. J Parasitol 66:735–741

    Article  CAS  PubMed  Google Scholar 

  40. Arroyo-Begovich A, Carabez-Trejo A (1982) Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers. J Parasitol 68:253–258

    Article  CAS  PubMed  Google Scholar 

  41. Spindler KD, Spindler-Barth M, Londershausen M (1990) Chitin metabolism: a target for drugs against parasites. Parasitol Res 76:283–288

    Article  CAS  PubMed  Google Scholar 

  42. Muller M (1991) Energy metabolism of anaerobic parasitic protists. In: Coombs GH, North MJ (eds) Biochemical protozoology. Taylor & Francis, London, pp 80–91

    Google Scholar 

  43. Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235:283–303

    Article  CAS  PubMed  Google Scholar 

  44. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lounvaud-Funel A (2001) Biogenic amines in wines: role of lactic acid bacteria. FEMS Microbiol Lett 199:9–13

    Article  Google Scholar 

  46. Loukou Z, Zotou A (2003) Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 996:103–113

    Article  CAS  PubMed  Google Scholar 

  47. Bauza T, Blaise A, Teissedre PL, Cabanis JC, Kanny G et al. (1995) Les amines biogenes du vin: metabolisme et toxicite. Bull L’OIV: 42–67

    Google Scholar 

  48. Verma AK, Raizada MK, Murti CK (1974) Effect of bioamines on the cellular differentiation of Hartmannella culbertsoni. Biochem Pharmacol 23:57–63

    Article  CAS  PubMed  Google Scholar 

  49. Morales-Vallarta M, Villarreal-Treviño L, Guerrero Medrano L, Ramírez-Bon E, Navarro-Marmolejo L, Said-Fernández S, Mata-Cárdenas BD (1997) Entamoeba invadens differentiation and E. histolytica cyst-like formation induced by CO2. Arch Med Res 28:150–151

    PubMed  Google Scholar 

  50. Stanley SL Jr (2003) Amoebiasis. Lancet 361:1025–1034

    Article  CAS  PubMed  Google Scholar 

  51. Bogdan C, Rollinghoff M, Diefenbach A (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12:64–76

    Article  CAS  PubMed  Google Scholar 

  52. Mehlotra RK (1996) Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol 22:295–314

    Article  CAS  PubMed  Google Scholar 

  53. Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (1984) Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224:70–72

    Article  CAS  PubMed  Google Scholar 

  54. Saraiva LM, Vicente JB, Teixeira M (2004) The role of the flavodiiron proteins in microbial nitric oxide detoxification. Adv Microb Physiol 49:77–129

    Article  CAS  PubMed  Google Scholar 

  55. Sen A, Chatterjee NS, Akbar MA, Nandi N et al (2007) The 29-kilodalton thiol-dependent peroxidase of Entamoeba histolytica is a factor involved in pathogenesis and survival of the parasite during oxidative stress. Eukaryot Cell 6:664–673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Jackson JB (1991) The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J Bioenerg Biomembr 23:715–741

    Article  CAS  PubMed  Google Scholar 

  57. Yousuf MA, Mi-ichi F, Nakada-Tsukui K, Nozaki T (2010) Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. Eukaryot Cell 9:926–933

    Article  PubMed Central  PubMed  Google Scholar 

  58. Vicente J, Ehrenkaufer G, Saraiva L, Teixeira M, Singh U (2008) Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol 11:51–69

    Article  PubMed Central  PubMed  Google Scholar 

  59. Ramos-Martínez E, Olivos-García A, Saavedra E, Nequiz M, Sánchez EC, Tello E, El-Hafidi M, Saralegui A, Pineda E, Delgado J, Montfort I, Pérez-Tamayo R (2009) Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol 39:693–702

    Article  PubMed  Google Scholar 

  60. Ramos E, Olivos-García A, Nequiz M, Saavedra E, Tello E, Saralegui A, Montfort I, Pérez Tamayo R (2007) Entamoeba histolytica: apoptosis induced in vitro by nitric oxide species. Exp Parasitol 116:257–265

    Article  CAS  PubMed  Google Scholar 

  61. Lo HS, Reeves RE (1978) Pyruvate-to-ethanol pathway in Entamoeba histolytica. Biochem J 171(1):225–230

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ali V, Nozaki T (2006) Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways. Mol Biochem Parasitol 145:71–83

    Article  CAS  PubMed  Google Scholar 

  63. Bragg PD, Reeves RE (1962) Pathways of glucose dissimilation in Laredo strain of Entamoeba histolytica. Exp Parasitol 12:393–400

    Article  CAS  PubMed  Google Scholar 

  64. Krüger A, Grüning NM, Wamelink MM, Kerick M, Kirpy A, Parkhomchuk D, Bluemlein K, Schweiger MR, Soldatov A, Lehrach H, Jakobs C, Ralser M (2011) The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxid Redox Signal 15:311–324

    Article  PubMed  Google Scholar 

  65. Jeelani G, Husain A, Sato D, Soga T, Suematsu M, Nozaki T (2013) Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica. Biochimie 95:309–319

    Article  CAS  PubMed  Google Scholar 

  66. Chapman A, Linstead DJ, Lloyd D, Williams J (1985) 13C-NMR reveals glycerol as an unexpected major metabolite of the protozoan parasite Trichomonas vaginalis. FEBS J 191:287–292

    Article  CAS  Google Scholar 

  67. Hammond DJ, Bowman IB (1980) Studies on glycerol kinase and its role in ATP synthesis in Trypanosoma brucei. Mol Biochem Parasitol 2:77–91

    Article  CAS  PubMed  Google Scholar 

  68. Lian LY, Al-Helal M, Roslaini AM, Fisher N, Bray PG (2009) Glycerol: an unexpected major metabolite of energy metabolism by the human malaria parasite. Malar J 6:38

    Article  Google Scholar 

  69. Reeves RE, Lobelle-Rich P (1983) Absence of α-glycerophosphate dehydrogenase in axenically grown Entamoeba histolytica. Am J Trop Med Hyg 32:1177–1178

    CAS  PubMed  Google Scholar 

  70. Gillin FD, Diamond LS (1980) Attachment of Entamoeba histolytica to glass in a defined maintenance medium: specific requirement for cysteine and ascorbic acid. J Protozool 27:474–478

    Article  CAS  PubMed  Google Scholar 

  71. Gillin FD, Diamond LS (1981) Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp Parasitol 52:9–17

    Article  CAS  PubMed  Google Scholar 

  72. Gillin FD, Diamond LS (1981) Entamoeba histolytica and Giardia lamblia: growth responses to reducing agents. Exp Parasitol 51:382–391

    Article  CAS  PubMed  Google Scholar 

  73. Jeelani G, Husain A, Sato D, Ali V, Suematsu M, Soga T, Nozaki T (2010) Two atypical l-cysteine-regulated NADPH-dependent oxidoreductases involved in redox maintenance, l-cystine and iron reduction, and metronidazole activation in the enteric protozoan Entamoeba histolytica. J Biol Chem 285:26889–26899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Rébeillé F, Jabrin S, Bligny R, Loizeau K, Gambonnet B, Van Wilder V, Douce R, Ravanel S (2006) Methionine catabolism in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc Natl Acad Sci USA 103:15687–15692

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hussain S, Ali V, Jeelani G, Nozaki T (2009) Isoform-dependent feedback regulation of serine O-acetyltransferase isoenzymes involved in l-cysteine biosynthesis of Entamoeba histolytica. Mol Biochem Parasitol 163:39–47

    Article  CAS  PubMed  Google Scholar 

  76. Husain A, Jeelani G, Sato D, Nozaki T (2011) Global analysis of gene expression in response to l-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. BMC Genomics 12:275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Ali V, Nozaki T (2007) Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by “amitochondriate” protozoan parasites. Clin Microbiol Rev 20:164–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chayen A, Mirelman D, Chayen R (1984) Polyamines in Entamoeba invadens. Cell Biochem Funct 2:115–118

    Article  CAS  PubMed  Google Scholar 

  79. Mi-ichi F, Yousuf MA, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci USA 106:21731–21736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Mi-ichi F, Makiuchi T, Furukawa A, Sato D, Nozaki T (2011) Sulfate activation in mitosomes plays an important role in the proliferation of Entamoeba histolytica. PLoS Negl Trop Dis 5:e1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Makiuchi T, Mi-Ichi F, Nakada-Tsukui K, Nozaki T (2013) Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep 3:1129

    Article  PubMed Central  PubMed  Google Scholar 

  82. Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J (2010) Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12:331–342

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyoshi Nozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Jeelani, G., Sato, D., Nozaki, T. (2015). Metabolomic Analysis of Entamoeba Biology. In: Nozaki, T., Bhattacharya, A. (eds) Amebiasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55200-0_19

Download citation

Publish with us

Policies and ethics