Amebiasis pp 263-278 | Cite as

Mechanism of Cell Division in Entamoeba histolytica



The cell division cycle of Entamoeba histolytica shows important differences from that of unicellular and higher eukaryotes. We have observed that E. histolytica cultures are made up of a heterogeneous population of cells that contain one or many nuclei and varying DNA content in each nucleus. Chromosome segregation occurs on a variety of atypical microtubular assemblies, and daughter cells are formed from mechanical rupture of cytoplasmic extensions that may need “helper cells” to complete the separation. Our observations suggest that whole genome copies are lost when cells shift from axenic to xenic cultures or from trophozoites to cysts. Gain or loss of whole genome copies during changes in growth conditions is possibly sustained by the inherent plasticity of the amoeba genome. Molecular studies have shown that orthologues of conserved checkpoint proteins that regulate the eukaryotic cell cycle are absent in this organism. Absence of checkpoint control leads to unregulated DNA synthesis, asymmetrical chromosome segregation, and aberrant cytokinesis in eukaryotes. In spite of the perceived lack of control and atypical mode of genome multiplication and partitioning, these cells survive in a foreign host, to multiply and cause disease or remain dormant for long periods of time, followed by active growth. Absence of known regulatory mechanisms coupled to a unique form of cell division and propagation makes the events leading to formation of Entamoeba daughter cells an interesting and challenging study. This chapter summarizes our recent attempts in understanding the cell division process of Entamoeba histolytica.


Chromosome Segregation Entamoeba Histolytica Checkpoint Protein Intercellular Bridge Histolytica Trophozoite 


  1. 1.
    Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374PubMedCrossRefGoogle Scholar
  2. 2.
    Nasmyth K, Peters JM, Uhlmann F (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288(5470):1379–1385PubMedCrossRefGoogle Scholar
  3. 3.
    Mukherjee C, Clark CG, Lohia A (2008) Entamoeba shows reversible variation in ploidy under different growth conditions and between life cycle phases. PLoS Negl Trop Dis 2(8):e281PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Dvorak JA, Kobayashi S, Alling DW, Hallahan CW (1995) Elucidation of the DNA synthetic cycle of Entamoeba spp. using flow cytometry and mathematical modeling. J Eukaryot Microbiol 42(5):610–616PubMedCrossRefGoogle Scholar
  5. 5.
    Gangopadhyay SS, Ray SS, Kennady K, Pande G, Lohia A (1997) Heterogeneity of DNA content and expression of cell cycle genes in axenically growing Entamoeba histolytica HM1:IMSS clone A. Mol Biochem Parasitol 90(1):9–20PubMedCrossRefGoogle Scholar
  6. 6.
    Das S, Lohia A (2002) Delinking of S phase and cytokinesis in the protozoan parasite Entamoeba histolytica. Cell Microbiol 4(1):55–60PubMedCrossRefGoogle Scholar
  7. 7.
    Dam S, Lohia A (2010) Entamoeba histolytica sirtuin EhSir2a deacetylates tubulin and regulates the number of microtubular assemblies during the cell cycle. Cell Microbiol 12(7):1002–1014PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Mukherjee C, Majumder S, Lohia A (2009) Inter-cellular variation in DNA content of Entamoeba histolytica originates from temporal and spatial uncoupling of cytokinesis from the nuclear cycle. PLoS Negl Trop Dis 3(4):e409PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gadde S, Heald R (2004) Mechanisms and molecules of the mitotic spindle. Curr Biol 14(18):R797–R805PubMedCrossRefGoogle Scholar
  10. 10.
    Joshi HC (1994) Microtubule organizing centers and gamma-tubulin. Curr Opin Cell Biol 6(1):54–62PubMedCrossRefGoogle Scholar
  11. 11.
    Katiyar SK, Edlind TD (1996) Entamoeba histolytica encodes a highly divergent beta-tubulin. J Eukaryot Microbiol 43(1):31–34PubMedCrossRefGoogle Scholar
  12. 12.
    Ray SS, Gangopadhyay SS, Pande G, Samuelson J, Lohia A (1997) Primary structure of Entamoeba histolytica gamma-tubulin and localisation of amoebic microtubule organising centres. Mol Biochem Parasitol 90(1):331–336PubMedCrossRefGoogle Scholar
  13. 13.
    Sanchez MA, Peattie DA, Wirth D, Orozco E (1994) Cloning, genomic organization and transcription of the Entamoeba histolytica alpha-tubulin-encoding gene. Gene (Amst) 146(2):239–244CrossRefGoogle Scholar
  14. 14.
    Roy D, Lohia A (2004) Sequence divergence of Entamoeba histolytica tubulin is responsible for its altered tertiary structure. Biochem Biophys Res Commun 319(3):1010–1016PubMedCrossRefGoogle Scholar
  15. 15.
    Vayssie L, Vargas M, Weber C, Guillen N (2004) Double-stranded RNA mediates homology-dependent gene silencing of gamma-tubulin in the human parasite Entamoeba histolytica. Mol Biochem Parasitol 138(1):21–28PubMedCrossRefGoogle Scholar
  16. 16.
    Chavez-Munguia B, Tsutsumi V, Martinez-Palomo A (2006) Entamoeba histolytica: ultrastructure of the chromosomes and the mitotic spindle. Exp Parasitol 114(3):235–239PubMedCrossRefGoogle Scholar
  17. 17.
    Orozco E, Solis FJ, Dominguez J, Chavez B, Hernandez F (1988) Entamoeba histolytica: cell cycle and nuclear division. Exp Parasitol 67(1):85–95PubMedCrossRefGoogle Scholar
  18. 18.
    Solis FJ, Barrios R (1991) Entamoeba histolytica: microtubule movement during mitosis. Exp Parasitol 73(3):276–284PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchison TJ (1995) Evolution of a dynamic cytoskeleton. Philos Trans R Soc Lond B Biol Sci 349(1329):299–304PubMedCrossRefGoogle Scholar
  20. 20.
    Clarke DJ, Gimenez-Abian JF (2000) Checkpoints controlling mitosis. Bioessays 22(4):351–363PubMedCrossRefGoogle Scholar
  21. 21.
    Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246(4930):629–634PubMedCrossRefGoogle Scholar
  22. 22.
    Russell P (1998) Checkpoints on the road to mitosis. Trends Biochem Sci 23(10):399–402PubMedCrossRefGoogle Scholar
  23. 23.
    Forsburg SL, Nurse P (1991) Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7:227–256PubMedCrossRefGoogle Scholar
  24. 24.
    Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature (Lond) 344(6266):503–508CrossRefGoogle Scholar
  25. 25.
    Lohia A, Samuelson J (1993) Cloning of the Eh cdc2 gene from Entamoeba histolytica encoding a protein kinase p34cdc2 homologue. Gene (Amst) 127(2):203–207CrossRefGoogle Scholar
  26. 26.
    Das S, Lohia A (2000) MCM proteins of Entamoeba histolytica. Arch Med Res 31(4 suppl):S269–S270PubMedCrossRefGoogle Scholar
  27. 27.
    Ganguly A, Lohia A (2000) The diaphanous protein from Entamoeba histolytica controls cell motility and cytokinesis. Arch Med Res 31(4 suppl):S137–S139PubMedCrossRefGoogle Scholar
  28. 28.
    Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91(1):59–69PubMedCrossRefGoogle Scholar
  29. 29.
    Iwashita J, Sato Y, Kobayashi S, Takeuchi T, Abe T (2005) Isolation and functional analysis of a chk2 homologue from Entamoeba histolytica. Parasitol Int 54(1):21–27PubMedCrossRefGoogle Scholar
  30. 30.
    Cheeseman IM, Drubin DG, Barnes G (2002) Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157(2):199–203PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dastidar PG, Majumder S, Lohia A (2007) Eh Klp5 is a divergent member of the kinesin 5 family that regulates genome content and microtubular assembly in Entamoeba histolytica. Cell Microbiol 9(2):316–328PubMedCrossRefGoogle Scholar
  32. 32.
    Lohia A, Mukherjee C, Majumder S, Dastidar PG (2007) Genome re-duplication and irregular segregation occur during the cell cycle of Entamoeba histolytica. Biosci Rep 27(6):373–384PubMedCrossRefGoogle Scholar
  33. 33.
    Dastidar PG, Lohia A (2008) Bipolar spindle frequency and genome content are inversely regulated by the activity of two N-type kinesins in Entamoeba histolytica. Cell Microbiol 10:1559–1571Google Scholar
  34. 34.
    Majumder S, Lohia A (2008) Entamoeba histolytica encodes unique formins, a subset of which regulates DNA content and cell division. Infect Immun 76(6):2368–2378PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Arias-Romero LE, de Jesus Almaraz-Barrera M, Diaz-Valencia JD, Rojo-Dominguez A, Hernandez-Rivas R, Vargas M (2006) EhPAK2, a novel p21-activated kinase, is required for collagen invasion and capping in Entamoeba histolytica. Mol Biochem Parasitol 149(1):17–26PubMedCrossRefGoogle Scholar
  36. 36.
    Guillen N, Boquet P, Sansonetti P (1998) The small GTP-binding protein RacG regulates uroid formation in the protozoan parasite Entamoeba histolytica. J Cell Sci 111(pt 12):1729–1739PubMedGoogle Scholar
  37. 37.
    Welter BH, Powell RR, Leo M, Smith CM, Temesvari LA (2005) A unique Rab GTPase, EhRabA, is involved in motility and polarization of Entamoeba histolytica cells. Mol Biochem Parasitol 140(2):161–173PubMedCrossRefGoogle Scholar
  38. 38.
    Bhattacharya A, Padhan N, Jain R, Bhattacharya S (2006) Calcium-binding proteins of Entamoeba histolytica. Arch Med Res 37(2):221–225PubMedCrossRefGoogle Scholar
  39. 39.
    Jain R, Santi-Rocca J, Padhan N, Bhattacharya S, Guillen N, Bhattacharya A (2008) Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell Microbiol 10(6):1373–1389PubMedCrossRefGoogle Scholar
  40. 40.
    Sahoo N, Labruyere E, Bhattacharya S, Sen P, Guillen N, Bhattacharya A (2004) Calcium binding protein 1 of the protozoan parasite Entamoeba histolytica interacts with actin and is involved in cytoskeleton dynamics. J Cell Sci 117(pt 16):3625–3634PubMedCrossRefGoogle Scholar
  41. 41.
    Grewal JS, Padhan N, Aslam S, Bhattacharya A, Lohia A (2013) “The calcium binding protein EhCaBP6 is a microtubular-end binding protein in Entamoeba histolytica.” Cell Microbiol 15(12):2020–2033Google Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of BiochemistryBose InstituteKolkataIndia

Personalised recommendations