Advertisement

Amebiasis pp 231-241 | Cite as

Transmembrane Kinases and Their Role in Entamoeba histolytica Pathogenesis

  • Nathaniel C. V. Christy
  • William A. PetriJr.
Chapter

Abstract

The transmembrane kinases (TMKs) of Entamoeba histolytica are a recently discovered family of cell-surface proteins that bear sequence similarity to the intermediate subunit of the Gal/GalNAc adherence lectin. The TMKs have been implicated in growth response to serum components as well as the phagocytosis of host cells and bacteria, processes that are critical to amebic pathogenesis during infection of the human host. Members of the TMK family appear to function variously as active kinases or pseudo-kinases depending on the structure of their intracellular domains and likely interact with intracellular signaling networks during signal transduction.

Keywords

Epidermal Growth Factor Receptor Entamoeba Histolytica Histolytica Trophozoite Intracellular Kinase Domain Epidermal Growth Factor Receptor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Annesley J (1841) Researches into the causes, nature, and treatment of the more prevalent diseases of India, and of warm climates generally. Longman, Brown, Green, and Longmans, LondonGoogle Scholar
  2. 2.
    Bryan C (1974) Ancient Egyptian medicine: the papyrus ebers. Ares, ChicagoGoogle Scholar
  3. 3.
    Petri WA Jr, Ravdin JI (1987) Cytopathogenicity of Entamoeba histolytica: the role of amebic adherence and contact-dependent cytolysis in pathogenesis. Eur J Epidemiol 3:123–136PubMedCrossRefGoogle Scholar
  4. 4.
    Huston CD, Boettner DR, Miller-Sims V, Petri WA (2003) Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica. Infect Immun 71:964–972PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ravdin JI, Guerrant RL (1981) Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. J Clin Invest 68:1305–1313PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ravdin JI, Murphy CF, Salata RA, Guerrant RL, Hewlett EL (1985) N-Acetyl-d-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. I. Partial purification and relation to amoebic virulence in vitro. J Infect Dis 151:804–815PubMedCrossRefGoogle Scholar
  7. 7.
    Petri WA, Smith RD, Schlesinger PH, Murphy CF, Ravdin JI (1987) Isolation of the galactose-binding lectin that mediates the in vitro adherence of Entamoeba histolytica. J Clin Invest 80:1238–1244PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Petri WA Jr, Broman J, Healy G, Quinn T, Ravdin JI (1989) Antigenic stability and immunodominance of the Gal/GalNAc adherence lectin of Entamoeba histolytica. Am J Med Sci 297:163–165PubMedCrossRefGoogle Scholar
  9. 9.
    Petri WA Jr, Chapman MD, Snodgrass T, Mann BJ, Broman J, Ravdin JI (1989) Subunit structure of the galactose and N-acetyl-d-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. J Biol Chem 264:3007–3012PubMedGoogle Scholar
  10. 10.
    Dodson JM, Lenkowski PW Jr, Eubanks AC, Jackson TF, Napodano J, Lyerly DM, Lockhart LA, Mann BJ, Petri WA Jr (1999) Infection and immunity mediated by the carbohydrate recognition domain of the Entamoeba histolytica Gal/GalNAc lectin. J Infect Dis 179:460–466PubMedCrossRefGoogle Scholar
  11. 11.
    Cheng XJ, Hughes MA, Huston CD, Loftus B, Gilchrist CA, Lockhart LA, Ghosh S, Miller-Sims V, Mann BJ, Petri WA, Tachibana H (2001) Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs. Infect Immun 69:5892–5898PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Pillai DR, Wan PS, Yau YC, Ravdin JI, Kain KC (1999) The cysteine-rich region of the Entamoeba histolytica adherence lectin (170-kilodalton subunit) is sufficient for high-affinity Gal/GalNAc-specific binding in vitro. Infect Immun 67:3836–3841PubMedCentralPubMedGoogle Scholar
  13. 13.
    Cheng XJ, Tsukamoto H, Kaneda Y, Tachibana H (1998) Identification of the 150-kDa surface antigen of Entamoeba histolytica as a galactose- and N-acetyl-d-galactosamine-inhibitable lectin. Parasitol Res 84:632–639PubMedCrossRefGoogle Scholar
  14. 14.
    Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature (Lond) 433:865–868CrossRefGoogle Scholar
  15. 15.
    Adam RD, Aggarwal A, Lal AA, De La Cruz VF, McCutchan T, Nash TE (1988) Antigenic variation of a cysteine-rich protein in Giardia lamblia. J Exp Med 167:109–118PubMedCrossRefGoogle Scholar
  16. 16.
    Beck DL, Boettner DR, Dragulev B, Ready K, Nozaki T, Petri WA (2005) Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in Entamoeba histolytica. Eukaryot Cell 4:722–732PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Shiu S-H, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98:10763–10768PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Cock JM, Vanoosthuyse V, Gaude T (2002) Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities. Curr Opin Cell Biol 14:230–236PubMedCrossRefGoogle Scholar
  19. 19.
    Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557. doi: 10.1038/sj.onc.1203957 PubMedCrossRefGoogle Scholar
  20. 20.
    Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284:31–53PubMedCrossRefGoogle Scholar
  21. 21.
    Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mittal K, Welter BH, Temesvari LA (2008) Entamoeba histolytica: lipid rafts are involved in adhesion of trophozoites to host extracellular matrix components. Exp Parasitol 120:127–134PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Nash TE (2002) Surface antigenic variation in Giardia lamblia. Mol Microbiol 45:585–590PubMedCrossRefGoogle Scholar
  24. 24.
    Donelson JE (2003) Antigenic variation and the African trypanosome genome. Acta Trop 85:391–404PubMedCrossRefGoogle Scholar
  25. 25.
    Mehra A, Fredrick J, Petri WA, Bhattacharya S, Bhattacharya A (2006) Expression and function of a family of transmembrane kinases from the protozoan parasite Entamoeba histolytica. Infect Immun 74:5341–5351PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Shrimal S, Bhattacharya S, Bhattacharya A (2010) Serum-dependent selective expression of EhTMKB1-9, a member of Entamoeba histolytica B1 family of transmembrane kinases. PLoS Pathog 6:e1000929PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Shrimal S, Saha A, Bhattacharya S, Bhattacharya A (2012) Lipids induce expression of serum-responsive transmembrane kinase EhTMKB1-9 in an early branching eukaryote Entamoeba histolytica. Sci Rep 2Google Scholar
  28. 28.
    Abhyankar MM, Shrimal S, Gilchrist CA, Bhattacharya A, Petri WA Jr (2012) The Entamoeba histolytica serum-inducible transmembrane kinase EhTMKB1-9 is involved in intestinal amebiasis. Int J Parasitol Drugs Drug Resist 2:243–248PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Mirelman D, Feingold C, Wexler A, Bracha R (1983) Interactions between Entamoeba histolytica, bacteria and intestinal cells. Ciba Found Symp 99:2–30PubMedGoogle Scholar
  30. 30.
    Boettner DR, Huston CD, Sullivan JA, Petri WA (2005) Entamoeba histolytica and Entamoeba dispar utilize externalized phosphatidylserine for recognition and phagocytosis of erythrocytes. Infect Immun 73:3422–3430PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Rodríguez MA, Orozco E (1986) Isolation and characterization of phagocytosis- and virulence-deficient mutants of Entamoeba histolytica. J Infect Dis 154:27–32PubMedCrossRefGoogle Scholar
  32. 32.
    Hirata KK, Que X, Melendez-Lopez SG, Debnath A, Myers S, Herdman DS, Orozco E, Bhattacharya A, McKerrow JH, Reed SL (2007) A phagocytosis mutant of Entamoeba histolytica is less virulent due to deficient proteinase expression and release. Exp Parasitol 115:192–199PubMedCrossRefGoogle Scholar
  33. 33.
    Ghosh SK, Samuelson J (1997) Involvement of p21racA, phosphoinositide 3-kinase, and vacuolar ATPase in phagocytosis of bacteria and erythrocytes by Entamoeba histolytica: suggestive evidence for coincidental evolution of amebic invasiveness. Infect Immun 65:4243–4249PubMedCentralPubMedGoogle Scholar
  34. 34.
    Powell RR, Welter BH, Hwu R, Bowersox B, Attaway C, Temesvari LA (2006) Entamoeba histolytica: FYVE-finger domains, phosphatidylinositol 3-phosphate biosensors, associate with phagosomes but not fluid filled endosomes. Exp Parasitol 112:221–231PubMedCrossRefGoogle Scholar
  35. 35.
    Byekova YA, Powell RR, Welter BH, Temesvari LA (2010) Localization of phosphatidylinositol (3,4,5)-trisphosphate to phagosomes in Entamoeba histolytica achieved using glutathione S-transferase- and green fluorescent protein-tagged lipid biosensors. Infect Immun 78:125–137PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Plüddemann A, Neyen C, Gordon S (2007) Macrophage scavenger receptors and host-derived ligands. Methods 43:207–217PubMedCrossRefGoogle Scholar
  37. 37.
    Okada M, Huston CD, Mann BJ, Petri WA Jr, Kita K, Nozaki T (2005) Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica. Eukaryot Cell 4:827–831PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Okada M, Huston CD, Oue M, Mann BJ, Petri WA Jr, Kita K, Nozaki T (2006) Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Mol Biochem Parasitol 145:171–183PubMedCrossRefGoogle Scholar
  39. 39.
    Marion S, Laurent C, Guillén N (2005) Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach. Cell Microbiol 7:1504–1518PubMedCrossRefGoogle Scholar
  40. 40.
    Boettner DR, Huston CD, Linford AS, Buss SN, Houpt E, Sherman NE, Petri WA (2008) Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family. PLoS Pathog 4:e8PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Buss SN, Hamano S, Vidrich A, Evans C, Zhang Y, Crasta OR, Sobral BW, Gilchrist CA, Petri WA (2010) Members of the Entamoeba histolytica transmembrane kinase family play non-redundant roles in growth and phagocytosis. Int J Parasitol 40:833–843PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Christy NCV, Buss SN, Petri WA Jr (2012) Common pathways for receptor-mediated ingestion of Escherichia coli and LDL cholesterol by Entamoeba histolytica regulated in part by transmembrane kinase 39. Int J Parasitol 42:393–400PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Galán JE, Pace J, Hayman MJ (1992) Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature (Lond) 357:588–589CrossRefGoogle Scholar
  45. 45.
    Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA (2010) ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA 107:7692–7697PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Soler M, Mancini F, Meca-Cortés O, Sánchez-Cid L, Rubio N, López-Fernández S, Lozano JJ, Blanco J, Fernández PL, Thomson TM (2009) HER3 is required for the maintenance of neuregulin-dependent and -independent attributes of malignant progression in prostate cancer cells. Int J Cancer 125:2565–2575PubMedCrossRefGoogle Scholar
  47. 47.
    Gregory CW, Whang YE, McCall W, Fei X, Liu Y, Ponguta LA, French FS, Wilson EM, Earp HS 3rd (2005) Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res 11:1704–1712PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Nathaniel C. V. Christy
    • 1
  • William A. PetriJr.
    • 1
  1. 1.Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations