Scanning Electrochemical Microscopy for Imaging Single Cells and Biomolecules

  • Yasufumi Takahashi
  • Hitoshi Shiku
  • Tomokazu Matsue


This article presents an overview of the recent progress in scanning electrochemical microscopy (SECM) for imaging single cells and biomolecules. SECM is a technique for characterizing the local electrochemical nature of various materials by scanning a probe microelectrode. The probe current reflects the electrochemical processes occurring in the small space surrounded by the probe and the substrate. The spatial resolution of SECM is inferior to conventional scanning probe microscopes such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM), since the fabrication of the probe microelectrodes with nanometer sizes is quite difficult. However, recent progress in the fabrication of nanometer-scale electrodes and the development of electrode–sample distance control systems has greatly enhanced the capacity of SECM systems to solve problems in cell biology. The topics reviewed include the following: enzyme activity evaluation, electrochemical enzyme-linked immunosorbent assays, membrane permeability evaluation, respiratory activity measurements, reporter gene assays, membrane protein imaging, and neurotransmitter detection.


Epidermal Growth Factor Receptor Bilayer Lipid Membrane Redox Species Scan Electrochemical Microscopy Epidermal Growth Factor Receptor Expression Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alpuche-Aviles MA, Wipf DO (2001) Impedance feedback control for scanning electrochemical microscopy. Anal Chem 73(20):4873–4881CrossRefPubMedGoogle Scholar
  2. Amphlett JL, Denuault G (1998) Scanning electrochemical microscopy (SECM): an investigation of the effects of tip geometry on amperometric tip response. J Phys Chem B 102(49):9946–9951CrossRefGoogle Scholar
  3. Bath BD, Lee RD, White HS, Scott ER (1998) Imaging molecular transport in porous membranes. Observation and analysis of electroosmotic flow in individual pores using the scanning electrochemical microscope. Anal Chem 70(6):1047–1058CrossRefGoogle Scholar
  4. Chen TK, Luo GO, Ewing AG (1994) Amperometric monitoring of stimulated catecholamine release from rat pheochromocytoma (Pc12) cells at the zeptomole level. Anal Chem 66(19):3031–3035CrossRefPubMedGoogle Scholar
  5. Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2010) Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal Chem 82(4):1270–1276CrossRefPubMedGoogle Scholar
  6. Edwards MA, Martin S, Whitworth AL, Macpherson JV, Unwin PR (2006) Scanning electrochemical microscopy: principles and applications to biophysical systems. Physiol Meas 27(12):R63–R108CrossRefPubMedGoogle Scholar
  7. Fan FRF, Bard AJ (1999) Imaging of biological macromolecules on mica in humid air by scanning electrochemical microscopy. Proc Natl Acad Sci U S A 96(25):14222–14227CrossRefPubMedCentralPubMedGoogle Scholar
  8. Guell AG, Ebejer N, Snowden ME, McKelvey K, Macpherson JV, Unwin PR (2012) Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks. Proc Natl Acad Sci U S A 109(29):11487–11492CrossRefPubMedCentralPubMedGoogle Scholar
  9. Hengstenberg A, Kranz C, Schuhmann W (2000) Facilitated tip-positioning and applications of non-electrode tips in scanning electrochemical microscopy using a sheer force based constant-distance mode. Chem Eur J 6(9):1547–1554CrossRefPubMedGoogle Scholar
  10. Hengstenberg A, Blochl A, Dietzel ID, Schuhmann W (2001) Spatially resolved detection of neurotransmitter secretion from individual cells by means of scanning electrochemical microscopy. Angew Chem Int Ed 40(5):905–908CrossRefGoogle Scholar
  11. Kasai S, Yokota A, Zhou HF, Nishizawa M, Niwa K, Onouchi T, Matsue T (2000) Immunoassay of the MRSA-related toxic protein, leukocidin, with scanning electrochemical microscopy. Anal Chem 72(23):5761–5765CrossRefPubMedGoogle Scholar
  12. Kaya T, Nagamine K, Matsui N, Yasukawa T, Shiku H, Matsue T (2004) On-chip electrochemical measurement of beta-galactosidase expression using a microbial chip. Chem Commun (2):248–249Google Scholar
  13. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73(2):653–658CrossRefPubMedCentralPubMedGoogle Scholar
  14. Kranz C, Friedbacher G, Mizaikoff B (2001) Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information. Anal Chem 73(11):2491CrossRefPubMedGoogle Scholar
  15. Kurulugama RT, Wipf DO, Takacs SA, Pongmayteegul S, Garris PA, Baur JE (2005) Scanning electrochemical microscopy of model neurons: constant distance imaging. Anal Chem 77(4):1111–1117CrossRefPubMedGoogle Scholar
  16. Lai SCS, Dudin PV, Macpherson JV, Unwin PR (2011) Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J Am Chem Soc 133(28):10744–10747CrossRefPubMedGoogle Scholar
  17. Liebetrau JM, Miller HM, Baur JE (2003) Scanning electrochemical microscopy of model neurons: imaging and real-time detection of morphological changes. Anal Chem 75(3):563–571CrossRefPubMedGoogle Scholar
  18. Macpherson JV, Unwin PR (2000) Combined scanning electrochemical-atomic force microscopy. Anal Chem 72(2):276–285CrossRefPubMedGoogle Scholar
  19. Macpherson JV, OHare D, Unwin PR, Winlove CP (1997) Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage. Biophys J 73(5):2771–2781CrossRefPubMedCentralPubMedGoogle Scholar
  20. Matsue T (2012) Development of biosensing devices and systems using micro/nanoelectrodes. Bull Chem Soc Jpn 85(5):545–557CrossRefGoogle Scholar
  21. Matsue T (2013) Bioimaging with micro/nanoelectrode systems. Anal Sci 29(2):171–179CrossRefPubMedGoogle Scholar
  22. Matsue T, Shiku H, Yamada H, Uchida I (1994) Permselectivity of voltage-gated alamethicin ion-channel studied by microamperometry. J Phys Chem 98(43):11001–11003CrossRefGoogle Scholar
  23. Matsui N, Kaya T, Nagamine K, Yasukawa T, Shiku H, Matsue T (2006) Electrochemical mutagen screening using microbial chip. Biosens Bioelectron 21(7):1202–1209CrossRefPubMedGoogle Scholar
  24. Mezour MA, Morin M, Mauzeroll J (2011) Fabrication and characterization of laser pulled platinum microelectrodes with controlled geometry. Anal Chem 83(6):2378–2382CrossRefPubMedGoogle Scholar
  25. Miao WJ, Choi JP, Bard AJ (2002) Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited - A new route involving TPrA•+ cation radicals. J Am Chem Soc 124(48):14478–14485CrossRefPubMedGoogle Scholar
  26. Mirkin MV, Nogala W, Velmurugan J, Wang YX (2011) Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys Chem Chem Phys 13(48):21196–21212CrossRefPubMedGoogle Scholar
  27. Nishizawa M, Takoh K, Matsue T (2002) Micropatterning of HeLa cells on glass substrates and evaluation of respiratory activity using microelectrodes. Langmuir 18(9):3645–3649CrossRefGoogle Scholar
  28. Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GWJ, Frolenkov GI, Klenerman D, Korchev YE (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6(4):279–281CrossRefPubMedCentralPubMedGoogle Scholar
  29. Pierce DT, Unwin PR, Bard AJ (1992) Scanning electrochemical microscopy.17. Studies of enzyme mediator kinetics for membrane-immobilized and surface-immobilized glucose-oxidase. Anal Chem 64(17):1795–1804CrossRefGoogle Scholar
  30. Shao YH, Mirkin MV (1998) Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy (SECM). J Phys Chem B 102(49):9915–9921CrossRefGoogle Scholar
  31. Shiku H, Takeda T, Yamada H, Matsue T, Uchida I (1995) Microfabrication and characterization of diaphorase-patterned surfaces by scanning electrochemical microscopy. Anal Chem 67(2):312–317CrossRefGoogle Scholar
  32. Shiku H, Matsue T, Uchida I (1996) Detection of microspotted carcinoembryonic antigen on a glass substrate by scanning electrochemical microscopy. Anal Chem 68(7):1276–1278CrossRefPubMedGoogle Scholar
  33. Shiku H, Hara Y, Matsue T, Uchida I, Yamauchi T (1997) Dual immunoassay of human chorionic gonadotropin and human placental lactogen at a miocrofabricated substrate by scanning electrochemical microscopy. J Electroanal Chem 438(1–2):187–190CrossRefGoogle Scholar
  34. Shiku H, Shiraishi T, Ohya H, Matsue T, Abe H, Hoshi H, Kobayashi M (2001) Oxygen consumption of single bovine embryos probed by scanning electrochemical microscopy. Anal Chem 73(15):3751–3758CrossRefPubMedGoogle Scholar
  35. Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9(7):802–823CrossRefPubMedGoogle Scholar
  36. Takahashi Y, Hirano Y, Yasukawa T, Shiku H, Yamada H, Matsue T (2006) Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir 22(25):10299–10306CrossRefPubMedGoogle Scholar
  37. Takahashi Y, Miyamoto T, Shiku H, Asano R, Yasukawa T, Kumagai I, Matsue T (2009a) Electrochemical detection of epidermal growth factor receptors on a single living cell surface by scanning electrochemical microscopy. Anal Chem 81(7):2785–2790CrossRefPubMedGoogle Scholar
  38. Takahashi Y, Shiku H, Murata T, Yasukawa T, Matsue T (2009b) Transfected single-cell imaging by scanning electrochemical optical microscopy with shear force feedback regulation. Anal Chem 81(23):9674–9681CrossRefPubMedGoogle Scholar
  39. Takahashi Y, Murakami Y, Nagamine K, Shiku H, Aoyagi S, Yasukawa T, Kanzaki M, Matsue T (2010a) Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode. Phys Chem Chem Phys 12(34):10012–10017CrossRefPubMedGoogle Scholar
  40. Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T (2010b) Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. J Am Chem Soc 132(29):10118–10126CrossRefPubMedGoogle Scholar
  41. Takahashi Y, Miyamoto T, Shiku H, Ino K, Yasukawa T, Asano R, Kumagai I, Matsue T (2011a) Electrochemical detection of receptor-mediated endocytosis by scanning electrochemical microscopy. Phys Chem Chem Phys 13(37):16569–16573CrossRefPubMedGoogle Scholar
  42. Takahashi Y, Shevchuk AI, Novak P, Zhang YJ, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE (2011b) Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed 50(41):9638–9642CrossRefGoogle Scholar
  43. Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J, Unwin PR, Shiku H, Gorelik J, Klenerman D, Korchev YE, Matsue T (2012) Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. Proc Natl Acad Sci U S A 109(29):11540–11545CrossRefPubMedCentralPubMedGoogle Scholar
  44. Torisawa YS, Kaya T, Takii Y, Oyamatsu D, Nishizawa M, Matsue T (2003) Scanning electrochemical microscopy-based drug sensitivity test for a cell culture integrated in silicon microstructures. Anal Chem 75(9):2154–2158CrossRefPubMedGoogle Scholar
  45. Torisawa YS, Ohara N, Nagamine K, Kasai S, Yasukawa T, Shiku H, Matsue T (2006) Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. Anal Chem 78(22):7625–7631CrossRefPubMedGoogle Scholar
  46. Troyer KP, Heien MLAV, Venton BJ, Wightman RM (2002) Neurochemistry and electroanalytical probes. Curr Opin Chem Biol 6(5):696–703CrossRefPubMedGoogle Scholar
  47. Wijayawardhana CA, Wittstock G, Halsall HB, Heineman WR (2000) Spatially addressed deposition and imaging of biochemically active bead microstructures by scanning electrochemical microscopy. Anal Chem 72(2):333–338CrossRefPubMedGoogle Scholar
  48. Williams CG, Edwards MA, Colley AL, Macpherson JV, Unwin PR (2009) Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity. Anal Chem 81(7):2486–2495CrossRefPubMedGoogle Scholar
  49. Wittstock G, Schuhmann W (1997) Formation and imaging of microscopic enzymatically active spots on an alkanethiolate-covered gold electrode by scanning electrochemical microscopy. Anal Chem 69(24):5059–5066CrossRefGoogle Scholar
  50. Yamada H, Matsue T, Uchida I (1991) A microvoltammetric study of permeation of ferrocene derivatives through a planer bilayer lipid-membrane. Biochem Biophys Res Commun 180(3):1330–1334CrossRefPubMedGoogle Scholar
  51. Yasukawa T, Uchida I, Matsue T (1998) Permeation of redox species through a cell membrane of a single, living algal protoplast studied by microamperometry. Biochim Biophys Acta 1369(1):152–158CrossRefPubMedGoogle Scholar
  52. Yasukawa T, Kaya T, Matsue T (1999) Dual imaging of topography and photosynthetic activity of a single protoplast by scanning electrochemical microscopy. Anal Chem 71(20):4637–4641CrossRefGoogle Scholar
  53. Zhao XC, Diakowski PM, Ding ZF (2010) Deconvoluting topography and spatial physiological activity of live macrophage cells by scanning electrochemical microscopy in constant-distance mode. Anal Chem 82(20):8371–8373CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Yasufumi Takahashi
    • 1
    • 2
  • Hitoshi Shiku
    • 1
    • 2
  • Tomokazu Matsue
    • 1
    • 2
  1. 1.Advanced Institute for Materials Research (WPI-AIMR)Tohoku UniversitySendaiJapan
  2. 2.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan

Personalised recommendations