Skip to main content

Plasmonic Sensors for Analysis of Proteins and an Oncologic Drug in Human Serum

  • Chapter
  • First Online:

Abstract

Nanobiosensors exploiting the optical phenomenon of surface plasmon resonance (SPR) are ideal candidates for the design of optical sensors for clinical diagnostics. The label-free nature and sensitivity of SPR biosensors to binding events makes them generally applicable to the detection of a broad class of biomolecules. Recent advances in instrument design, surface chemistry, nanomaterials and biosensing strategies have enabled numerous applications of SPR biosensors. This chapter will explore in greater detail the challenges and solutions developed recently for the analysis of proteins and drugs in crude biofluids. Specifically, surface chemistry has been investigated thoroughly to minimize the interference of nonspecific adsorption from biofluids, while nanomaterials have been exploited to increase the sensitivity of SPR biosensors, with biosensing strategies involving nanoparticles allowing for the analysis of small molecules. Additionally, miniaturization and optimization of instrumental design have paved the way towards point-of-care diagnostics. The successful detection of biologically relevant molecules directly in biofluids relies on all of these recent advances. In this chapter, they will be contextualized for the analysis of proteins and an oncologic drug, methotrexate, in crude serum samples using SPR sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas A, Linman MJ, Cheng Q (2011) New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens Bioelectron 26:1815–1824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aubé A, Breault-Turcot J, Chaurand P, Pelletier JN, Masson J-F (2013) Non-specific adsorption of crude cell lysate on surface plasmon resonance sensors. Langmuir 29:10141–10148

    Article  PubMed  Google Scholar 

  • Battaglia TM, Masson JF, Sierks MR, Beaudoin SP, Rogers J, Foster KN et al (2005) Quantification of cytokines involved in wound healing using surface plasmon resonance. Anal Chem 77:7016–7023

    Article  CAS  PubMed  Google Scholar 

  • Bedford EE, Spadavecchia J, Pradier C-M, Gu FX (2012) Surface plasmon resonance biosensors incorporating gold nanoparticles. Macromol Biosci 12:724–739

    Article  CAS  PubMed  Google Scholar 

  • Besselink GAJ, Kooyman RPH, van Os PJHJ, Engbers GHM, Schasfoort RBM (2004) Signal amplification on planar and gel-type sensor surfaces in surface plasmon resonance-based detection of prostate-specific antigen. Anal Biochem 333:165–173

    Article  CAS  PubMed  Google Scholar 

  • Blaszykowski C, Sheikh S, Thompson M (2012) Surface chemistry to minimize fouling from blood-based fluids. Chem Soc Rev 41:5599–5612

    Article  CAS  PubMed  Google Scholar 

  • Bolduc OR, Masson JF (2008) Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors. Langmuir 24:12085–12091

    Article  CAS  PubMed  Google Scholar 

  • Bolduc OR, Masson J-F (2011) Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem 83:8057–8062

    Article  CAS  PubMed  Google Scholar 

  • Bolduc OR, Clouthier CM, Pelletier JN, Masson J-FO (2009a) Peptide self-assembled monolayers for label-free and unamplified surface plasmon resonance biosensing in crude cell lysate. Anal Chem 81:6779–6788

    Article  CAS  PubMed  Google Scholar 

  • Bolduc OR, Live LS, Masson JF (2009b) High-resolution surface plasmon resonance sensors based on a dove prism. Talanta 77:1680–1687

    Article  CAS  PubMed  Google Scholar 

  • Bolduc OR, Pelletier JN, Masson J-F (2010) SPR biosensing in crude serum using ultralow fouling binary patterned peptide SAM. Anal Chem 82:3699–3706

    Article  CAS  PubMed  Google Scholar 

  • Bolduc OR, Lambert-Lanteigne P, Colin DY, Zhao SS, Proulx C, Boeglin D et al (2011) Modified peptide monolayer binding His-tagged biomolecules for small ligand screening with SPR biosensors. Analyst 136:3142–3148

    Article  CAS  PubMed  Google Scholar 

  • Brault ND, White AD, Taylor AD, Yu Q, Jiang S (2013) Directly functionalizable surface platform for protein arrays in undiluted human blood plasma. Anal Chem 85:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Breault-Turcot J, Masson J-F (2012) Nanostructured substrates for portable and miniature SPR biosensors. Anal Bioanal Chem 403:1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Bukar N, Zhao SS, Charbonneau D, Pelletier JN, Masson JF (2014) Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor. Chem Comm 50:4947–4950

    Google Scholar 

  • Caucheteur C, Shevchenko Y, Shao L-Y, Wuilpart M, Albert J (2011) High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt Express 19:1656–1664

    Article  PubMed  Google Scholar 

  • Chen S, Cao Z, Jiang S (2009) Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials 30:5892–5896

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30:5234–5240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chinowsky T, Naimushin A, Soelberg S, Spinelli C, Kauffman P, Yee S et al (2003a) Airborne surface plasmon resonance biosensing. In: VoDinh T, Gauglitz G, Lieberman RA, Schafer KP, Killinger DK (eds ) Environmental monitoring and remediation III, vol 5270, pp 182–188

    Google Scholar 

  • Chinowsky TM, Quinn JG, Bartholomew DU, Kaiser R, Elkind JL (2003b) Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor. Sens Actuat B Chem 91:266–274

    Article  CAS  Google Scholar 

  • Chinowsky TM, Soelberg SD, Baker P, Swanson NR, Kauffman P, Mactutis A et al (2007) Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosens Bioelectron 22:2268–2275

    Article  CAS  PubMed  Google Scholar 

  • Couture M, Live LS, Dhawan A, Masson J-F (2012) EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays. Analyst 137:4162–4170

    Article  CAS  PubMed  Google Scholar 

  • Couture M, Liang Y, Poirier Richard H-P, Faid R, Peng W, Masson J-F (2013a) Tuning the 3D plasmon field of nanohole arrays. Nanoscale 5(24):12399–12408

    Article  CAS  PubMed  Google Scholar 

  • Couture M, Zhao SS, Masson J-F (2013b) Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 15:11190–11216

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A (2012) Therapeutic drug monitoring - newer drugs and biomarkers. Elsevier Academic, Amsterdam

    Google Scholar 

  • de Juan-Franco E, Rodriguez-Frade JM, Mellado M, Lechuga LM (2013) Implementation of a SPR immunosensor for the simultaneous detection of the 22 K and 20 K hGH isoforms in human serum samples. Talanta 114:268–275

    Article  PubMed  Google Scholar 

  • Driskell JD, Lipert RJ, Porter MD (2006) Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. J Phys Chem B 110:17444–17451

    Article  CAS  PubMed  Google Scholar 

  • Frazier RA, Matthijs G, Davies MC, Roberts CJ, Schacht E, Tendler SJB (2000) Characterization of protein-resistant dextran monolayers. Biomaterials 21:957–966

    Article  CAS  Google Scholar 

  • Gao HW, Yang JC, Lin JY, Stuparu AD, Lee MH, Mrksich M et al (2010) Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. Nano Lett 10:2549–2554

    Article  CAS  PubMed  Google Scholar 

  • Garay F, Kisiel G, Fang A, Lindner E (2010) Surface plasmon resonance aided electrochemical immunosensor for CK-MB determination in undiluted serum samples. Anal Bioanal Chem 397:1873–1881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gentleman DJ, Obando LA, Masson JF, Holloway JR, Booksh KS (2004) Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems. Anal Chim Acta 515:291–302

    Article  CAS  Google Scholar 

  • Goodrich TT, Lee HJ, Corn RM (2004) Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. J Am Chem Soc 126:4086–4087

    Article  CAS  PubMed  Google Scholar 

  • Green RJ, Davies MC, Roberts CJ, Tendler SJB (1999) Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials 20:385–391

    Article  CAS  PubMed  Google Scholar 

  • Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920–930

    Article  CAS  PubMed  Google Scholar 

  • Hoa XD, Kirk AG, Tabrizian M (2007) Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens Bioelectron 23:151–160

    Article  CAS  PubMed  Google Scholar 

  • Hoa XD, Kirk AG, Tabrizian M (2009) Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings. Biosens Bioelectron 24:3043–3048

    Article  CAS  PubMed  Google Scholar 

  • Hodnik V, Anderluh G (2009) Toxin detection by surface plasmon resonance. Sensors 9:1339–1354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  PubMed  Google Scholar 

  • Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuat B Chem 54:16–24

    Article  CAS  Google Scholar 

  • Homola J, Vaisocherova H, Dostalek J, Piliarik M (2005) Multi-analyte surface plasmon resonance biosensing. Methods 37:26–36

    Article  CAS  PubMed  Google Scholar 

  • Kane RS, Deschatelets P, Whitesides GM (2003) Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19:2388–2391

    Article  CAS  Google Scholar 

  • Kelf TA, Sugawara Y, Cole RM, Baumberg JJ, Abdelsalam ME, Cintra S et al (2006) Localized and delocalized plasmons in metallic nanovoids. Phys Rev B 74:245415

    Article  Google Scholar 

  • Kyo M, Usui-Aoki K, Koga H (2005) Label-free detection of proteins in crude cell lysate with antibody arrays by a surface plasmon resonance imaging technique. Anal Chem 77:7115–7121

    Article  CAS  PubMed  Google Scholar 

  • Kyprianou D, Chianella I, Guerreiro A, Piletska EV, Piletsky SA (2013) Development of optical immunosensors for detection of proteins in serum. Talanta 103:260–266

    Article  CAS  PubMed  Google Scholar 

  • Kyung Min B, Shuler ML, Sung June K, Soon Joon Y, Donghyun K (2008) Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires. J Lightwave Technol 26:1472–1478

    Article  Google Scholar 

  • Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9:1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Ladd J, Lu H, Taylor AD, Goodell V, Disis ML, Jiang S (2009) Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids Surf B Biointerfaces 70:1–6

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Li Y, Wark AW, Corn RM (2005) Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal Chem 77:5096–5100

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lee HJ, Corn RM (2007) Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem 79:1082–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liedberg B, Nylander C, Lundstrom I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sens Actuat 4:299–304

    Article  CAS  Google Scholar 

  • Linman MJ, Sugerman K, Cheng Q (2010) Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method. Sens Actuat B Chem 145:613–619

    Article  CAS  Google Scholar 

  • Liu Y, Dong Y, Jauw J, Linman MJ, Cheng Q (2010) Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification. Anal Chem 82:3679–3685

    Article  CAS  PubMed  Google Scholar 

  • Live LS, Masson JF (2009) High sensitivity of plasmonic microstructures near the transition from short-range to propagating surface plasmon. J Phys Chem C 113:10052–10060

    Article  CAS  Google Scholar 

  • Live LS, Murray-Methot MP, Masson JF (2009) Localized and propagating surface plasmons in gold particles of near-micron size. J Phys Chem C 113:40–44

    Article  CAS  Google Scholar 

  • Live LS, Bolduc OR, Masson JF (2010) Propagating surface plasmon resonance on microhole arrays. Anal Chem 82:3780–3787

    Article  CAS  PubMed  Google Scholar 

  • Live L, Dhawan A, Gibson K, Poirier-Richard H-P, Graham D, Canva M et al (2012) Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing. Anal Bioanal Chem 404:2859–2868

    Article  CAS  PubMed  Google Scholar 

  • Masson JF, Battaglia TM, Kim YC, Prakash A, Beaudoin S, Booksh KS (2004a) Preparation of analyte-sensitive polymeric supports for biochemical sensors. Talanta 64:716–725

    Article  CAS  PubMed  Google Scholar 

  • Masson JF, Obando L, Beaudoin S, Booksh K (2004b) Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta 62:865–870

    Article  CAS  PubMed  Google Scholar 

  • Masson JF, Battaglia TM, Davidson MJ, Kim YC, Prakash AMC, Beaudoin S et al (2005) Biocompatible polymers for antibody support on gold surfaces. Talanta 67:918–925

    Article  CAS  PubMed  Google Scholar 

  • Masson JF, Battaglia TM, Cramer J, Beaudoin S, Sierks M, Booksh KS (2006a) Reduction of nonspecific protein binding on surface plasmon resonance biosensors. Anal Bioanal Chem 386:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Masson JF, Kim YC, Obando LA, Peng W, Booksh KS (2006b) Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region. Appl Spectrosc 60:1241–1246

    Article  CAS  PubMed  Google Scholar 

  • Masson JF, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS (2007) Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 79:612–619

    Article  CAS  PubMed  Google Scholar 

  • Masson J-F, Murray-Methot M-P, Live LS (2010) Nanohole arrays in chemical analysis: manufacturing methods and applications. Analyst 135:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Mitchell J (2010) Small molecule immunosensing using surface plasmon resonance. Sensors 10:7323–7346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mrksich M, Whitesides GM (1996) Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 25:55–78

    Article  CAS  PubMed  Google Scholar 

  • Naimushin AN, Soelberg SD, Nguyen DK, Dunlap L, Bartholomew D, Elkind J et al (2002) Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron 17:573–584

    Article  CAS  PubMed  Google Scholar 

  • Navratilova I, Skladal P (2003) Immunosensor for the measurement of human serum albumin in urine based on the Spreeta surface plasmon resonance sensor. Supramol Chem 15:109–115

    Article  CAS  Google Scholar 

  • Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001a) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    Article  CAS  Google Scholar 

  • Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE et al (2001b) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343

    Article  CAS  Google Scholar 

  • Phillips KS, Han JH, Cheng Q (2007) Development of a “membrane cloaking” method for amperometric enzyme immunoassay and surface plasmon resonance analysis of proteins in serum samples. Anal Chem 79:899–907

    Article  CAS  PubMed  Google Scholar 

  • Piliarik M, Vala M, Tichy I, Homola J (2009) Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosens Bioelectron 24:3430–3435

    Article  CAS  PubMed  Google Scholar 

  • Polanski M, Anderson NL (2006) A lis of candidate cancer biomarkers for targeted proteomics. Biomark Insights 2:1–48

    Google Scholar 

  • Ratel M, Provencher-Girard A, Zhao SS, Breault-Turcot J, Labrecque-Carbonneau J, Branca M et al (2013) Imidazolium-based ionic liquid surfaces for biosensing. Anal Chem 85:5770–5777

    Article  CAS  PubMed  Google Scholar 

  • Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11:1565–1588

    Article  PubMed Central  PubMed  Google Scholar 

  • Scarano S, Mascini M, Turner APF, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25:957–966

    Article  CAS  PubMed  Google Scholar 

  • Schlichtiger A, Baier C, Yin M-X, Holmes AB, Maruyama M, Strasser R et al (2013) Covalent attachment of functionalized cardiolipin on a biosensor gold surface allows repetitive measurements of anticardiolipin antibodies in serum. Anal Bioanal Chem 405:275–285

    Article  CAS  PubMed  Google Scholar 

  • Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuat B Chem 121:158–177

    Article  CAS  Google Scholar 

  • Shao L-Y, Shevchenko Y, Albert J (2010) Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors. Opt Express 18:11464–11471

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118–1129

    Article  Google Scholar 

  • Shevchenko YY, Albert J (2007) Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett 32:211–213

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko Y, Francis TJ, Blair DAD, Walsh R, DeRosa MC, Albert J (2011) In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal Chem 83:7027–7034

    Article  CAS  PubMed  Google Scholar 

  • Situ C, Wylie ARG, Douglas A, Elliott CT (2008) Reduction of severe bovine serum associated matrix effects on carboxymethylated dextran coated biosensor surfaces. Talanta 76:832–836

    Article  CAS  PubMed  Google Scholar 

  • Situ C, Buijs J, Mooney MH, Elliott CT (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trends Anal Chem 29:1305–1315

    Article  CAS  Google Scholar 

  • Spangler BD, Wilkinson EA, Murphy JT, Tyler BJ (2001) Comparison of the Spreeta (R) surface plasmon resonance sensor and a quartz crystal microbalance for detection of Escherichia coli heat-labile enterotoxin. Anal Chim Acta 444:149–161

    Article  CAS  Google Scholar 

  • Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973

    Article  CAS  PubMed  Google Scholar 

  • Statz AR, Barron AE, Messersmith PB (2008) Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter 4:131–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sugawara Y, Kelf TA, Baumberg JJ, Abdelsalam ME, Bartlett PN (2006) Strong coupling between localized plasmons and organic excitons in metal nanovoids. Phys Rev Lett 97:266808

    Article  CAS  PubMed  Google Scholar 

  • Trevino J, Calle A, Miguel Rodriguez-Frade J, Mellado M, Lechuga LM (2009a) Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples. Clin Chim Acta 403:56–62

    Article  CAS  PubMed  Google Scholar 

  • Trevino J, Calle A, Rodriguez-Frade JM, Mellado M, Lechuga LM (2009b) Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay. Talanta 78:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–5904

    Article  CAS  PubMed  Google Scholar 

  • Vaisocherova H, Yang W, Zhang Z, Cao Z, Cheng G, Piliarik M et al (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80:7894–7901

    Article  CAS  PubMed  Google Scholar 

  • Vaisocherova H, Faca VM, Taylor AD, Hanash S, Jiang SY (2009a) Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens Bioelectron 24:2143–2148

    Article  CAS  PubMed  Google Scholar 

  • Vaisocherova H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor AD et al (2009b) Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasm-aterial selection and protein immobilization optimization. Biosens Bioelectron 24:1924–1930

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Xue H, Li W, Zhang J, Jiang S (2009) Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 25:11911–11916

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Bai T, Carr LR, Keefe AJ, Xu J, Xue H et al (2012) The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials 33:7945–7951

    Article  CAS  PubMed  Google Scholar 

  • Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang M, Chen S, Horbetta TA, Ratner BD, Jiang S (2008) Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29:4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R, Irvin C et al (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotech 31:553–556

    Article  CAS  Google Scholar 

  • Zhao SS, Bichelberger MA, Colin DY, Robitaille R, Pelletier JN, Masson J-F (2012) Monitoring methotrexate in clinical samples from cancer patients during chemotherapy with a LSPR-based competitive sensor. Analyst 137:4742–4750

    Article  CAS  PubMed  Google Scholar 

  • Zhao SS, Bukar N, Toulouse J, Pelechacz D, Robitaille R, Pelletier JN, Masson JF (2015) Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosens Bioelectron 64:664–670

    Google Scholar 

  • Zhou W-J, Chen Y, Corn RM (2011a) Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal Chem 83:3897–3902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou W-J, Halpern AR, Seefeld TH, Corn RM (2011b) Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Anal Chem 84:440–445

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Masson, JF., Zhao, S.S. (2015). Plasmonic Sensors for Analysis of Proteins and an Oncologic Drug in Human Serum. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_15

Download citation

Publish with us

Policies and ethics