Skip to main content

Specialized Nanoneedles for Intracellular Analysis

  • Chapter
  • First Online:
Nanobiosensors and Nanobioanalyses

Abstract

Here, we introduce a novel approach to the detection of intracellular molecules by measuring direct interactions with an ultrathin probe, i.e. nanoneedle, which is mounted on an atomic force microscope (AFM). Standard AFM probes were sharpened, using a focused ion beam (FIB), to form high-aspect-ratio nanoneedles, which were then specifically functionalized and inserted into live cells. The insertion could be precisely detected using the resulted force–distance AFM curves, and no effect on cell viability was observed, even after repeated insertions. In addition, thanks to the high sensitivity of the AFM, distinct intermolecular unbinding events could be analyzed, which provided real-time information on the cytoskeleton state of the live cell. Following specific coatings and functionalization of the nanoneedles, various intracellular molecules could be detected and even inserted into live cells. The results presented here demonstrate the delivery of DNA vectors and the detection of mRNA and cytoskeletal proteins in live cells. Further advances in this technology, such as new developments in molecular functionalization options and improvements in the scale and accuracy of force measurements, will open possible new fields and applications for this diverse and powerful tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Kool ET (2006) Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc Natl Acad Sci U S A 103:263–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amemiya Y et al (2012) Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells. Biochem Biophys Res Commun 420:662–665

    Article  CAS  PubMed  Google Scholar 

  • Berthing T et al (2012) Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology 23:415102

    Article  PubMed  Google Scholar 

  • Bratu DP, Cha BJ, Mhlanga MM, Kramer FR, Tyagi S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proc Natl Acad Sci U S A 100:13308–13313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cash AD et al (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol 162:1623–1627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci U S A 104:8218–8222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa KD (2006) Imaging and probing cell mechanical properties with the atomic force microscope. Methods Mol Biol 319:331–361

    Article  PubMed  Google Scholar 

  • Guck J et al (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haghparast SM, Kihara T, Shimizu Y, Yuba S, Miyake J (2013) Actin-based biomechanical features of suspended normal and cancer cells. J Biosci Bioeng 116:380–385

    Article  CAS  PubMed  Google Scholar 

  • Han S, Nakamura C, Obataya I, Nakamura N, Miyake J (2005a) Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. Biochem Biophys Res Commun 332:633–639

    Article  CAS  PubMed  Google Scholar 

  • Han SW, Nakamura C, Obataya I, Nakamura N, Miyake J (2005b) A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron 20:2120–2125

    Article  CAS  PubMed  Google Scholar 

  • Han S et al (2008) High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine 4:215–225

    Article  CAS  PubMed  Google Scholar 

  • Han SW, Nakamura C, Imai Y, Nakamura N, Miyake J (2009) Monitoring of hormonal drug effect in a single breast cancer cell using an estrogen responsive GFP reporter vector delivered by a nanoneedle. Biosens Bioelectron 24:1219–1222

    Article  CAS  PubMed  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119:1772–1783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hertz H (1881) Ăśber dieBerĂĽhrung faster elastischer Körper. J fĂĽr die reine und angewandte Mathematik 92:156–171

    Google Scholar 

  • Hol EM et al (2003) Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8:786–796

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104(Pt 3):613–627

    PubMed  Google Scholar 

  • Iqbal K et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2:421–426

    Article  CAS  PubMed  Google Scholar 

  • Iwanami A et al (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kagiwada H et al (2010) The mechanical properties of a cell, as determined by its actin cytoskeleton, are important for nanoneedle insertion into a living cell. Cytoskeleton 67:496–503

    Article  CAS  PubMed  Google Scholar 

  • King MJ et al (2000) Rapid flow cytometric test for the diagnosis of membrane cytoskeleton-associated haemolytic anaemia. Br J Haematol 111:924–933

    CAS  PubMed  Google Scholar 

  • Matsuyama SS, Jarvik LF (1989) Hypothesis: microtubules, a key to Alzheimer disease. Proc Natl Acad Sci U S A 86:8152–8156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mhlanga MM, Vargas DY, Fung CW, Kramer FR, Tyagi S (2005) tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Res 33:1902–1912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671

    CAS  PubMed  Google Scholar 

  • Mieda S et al (2012) Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosens Bioelectron 31:323–329

    Article  CAS  PubMed  Google Scholar 

  • Nakamura C, Kamiishi H, Nakamura N, Miyake J (2008) A nanoneedle can be inserted into a living cell without any mechanical stress inducing calcium ion influx. Electrochem 76:586–589

    Article  CAS  Google Scholar 

  • Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325:273–284

    Article  CAS  PubMed  Google Scholar 

  • Nitin N, Santangelo PJ, Kim G, Nie S, Bao G (2004) Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 32:e58

    Article  PubMed Central  PubMed  Google Scholar 

  • Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005a) Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle. Nano Lett 5:27–30

    Article  CAS  PubMed  Google Scholar 

  • Obataya I, Nakamura C, Han S, Nakamura N, Miyake J (2005b) Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Biosens Bioelectron 20:1652–1655

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y et al (2002) Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 69:925–933

    Article  CAS  PubMed  Google Scholar 

  • Okada Y et al (2008) Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. Stem Cells 26:3086–3098

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Natori Y, Sato M, Umezawa Y (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat Methods 4:413–419

    CAS  PubMed  Google Scholar 

  • Pillarisetti A et al (2011) Mechanical phenotyping of mouse embryonic stem cells: increase in stiffness with differentiation. Cell Reprogram 13:371–380

    Article  CAS  PubMed  Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Remmerbach TW et al (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69:1728–1732

    Article  CAS  PubMed  Google Scholar 

  • Ryu S et al (2013) Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA. J Biosci Bioeng 116:391–396

    Article  CAS  PubMed  Google Scholar 

  • Salinas S, Carazo-Salas RE, Proukakis C, Schiavo G, Warner TT (2007) Spastin and microtubules: functions in health and disease. J Neurosci Res 85:2778–2782

    Article  CAS  PubMed  Google Scholar 

  • Silberberg YR et al (2013) Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosens Bioelectron 40:3–9

    Article  CAS  PubMed  Google Scholar 

  • Silberberg YR et al (2014) Detection of microtubules in vivo using antibody-immobilized nanoneedles. J Biosci Bioeng 117:107–112

    Article  CAS  PubMed  Google Scholar 

  • Singhal R et al (2011) Multifunctional carbon-nanotube cellular endoscopes. Nat Nanotechnol 6:57–64

    Article  CAS  PubMed  Google Scholar 

  • Sun P et al (2008) Nanoelectrochemistry of mammalian cells. Proc Natl Acad Sci U S A 105:443–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tsourkas A, Behlke MA, Rose SD, Bao G (2003) Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res 31:1319–1330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuji A et al (2000) Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J 78:3260–3274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Lin ZL, Hanson L, Cui Y, Cui BX (2012) Intracellular recording of action potentials by nanopillar electroporation. Nat Nanotechnol 7:185–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan R et al (2012) Nanowire-based single-cell endoscopy. Nat Nanotechnol 7:191–196

    Article  CAS  Google Scholar 

  • Yum K, Na S, Xiang Y, Wang N, Yu MF (2009) Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells. Nano Lett 9:2193–2198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zehner ZE (1991) Regulation of intermediate filament gene expression. Curr Opin Cell Biol 3:67–74

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikashi Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Kawamura, R., Silberberg, Y.R., Nakamura, C. (2015). Specialized Nanoneedles for Intracellular Analysis. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_14

Download citation

Publish with us

Policies and ethics