Skip to main content

Semiconductor Quantum Dots and Energy Transfer for Optical Sensing and Bioanalysis: Applications

  • Chapter
  • First Online:

Abstract

Semiconductor quantum dots (QDs) are very promising materials for optical sensing and bioanalysis. This chapter builds on Chap. 10, which reviewed the optical properties of QDs and their benefits for energy transfer, by illustrating the utility of QDs and energy transfer for optical sensing and bioanalysis. Representative examples of different in vitro assays and cellular probes from the literature are described. Energy transfer mechanisms including Förster resonance energy transfer (FRET ), bioluminescence and chemiluminescence resonance energy transfer (BRET and CRET ), nanosurface energy transfer (NSET ), and charge transfer can be used for optical signal generation in homogeneous assays, single-particle assays, and heterogeneous assays targeting bioanalytes as diverse as nucleic acids, proteins, small molecules, ions, and the activity of enzymes such as proteases, kinases, and nucleases. The importance and versatility of QDs in optical sensing and bioanalysis has been growing steadily since their introduction and will continue to grow in the near future as QD-based assays are optimized and applied to new problems, and new capabilities are developed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Algar WR, Krull UJ (2007) Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal Chim Acta 581:193–201

    CAS  PubMed  Google Scholar 

  • Algar WR, Krull UJ (2009) Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 81:4113–4120

    CAS  PubMed  Google Scholar 

  • Algar WR, Krull UJ (2010a) Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence. Langmuir 26:6041–6047

    CAS  PubMed  Google Scholar 

  • Algar WR, Krull UJ (2010b) FRET-based solid-phase three-color and four-color hybridization assays using mixed films of quantum dots and oligonucleotides. Mater Res Soc Symp Proc 1241:45–55

    Google Scholar 

  • Algar WR, Krull UJ (2010c) Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Anal Chem 82:400–405

    CAS  PubMed  Google Scholar 

  • Algar WR, Krull UJ (2011) Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer. Sensors 11:6214–6236

    PubMed Central  PubMed  Google Scholar 

  • Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25

    CAS  PubMed  Google Scholar 

  • Algar WR, Ancona MG, Malanoski AP, Susumu K, Medintz IL (2012a) Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. ACS Nano 6:11044–11058

    CAS  PubMed  Google Scholar 

  • Algar WR, Malanoski A, Deschamps JR, Blanco-Canosa JB, Susumu K, Stewart MH, Johnson BJ, Dawson PE, Medintz IL (2012b) Proteolytic activity at quantum dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial “hopping”. Nano Lett 12:3793–3802

    CAS  PubMed  Google Scholar 

  • Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL (2012c) Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Anal Chem 84:10136–10146

    CAS  PubMed  Google Scholar 

  • Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, Dawson PE, Hildebrandt N, Medintz IL (2012d) Quantum dots as simultaneous acceptors and donors in time-gated Forster resonance energy transfer relays: characterization and biosensing. J Am Chem Soc 134:1876–1891

    CAS  PubMed  Google Scholar 

  • Algar WR, Kim H, Medintz IL, Hildebrandt N (2013) Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots; Investigations and applications. Coord Chem Rev 263–264:65–85

    Google Scholar 

  • Aryal BP, Benson DE (2006) Electron donor solvent effects provide biosensing with quantum dots. J Am Chem Soc 128:15986–15987

    CAS  PubMed  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    CAS  PubMed  Google Scholar 

  • Bailey VJ, Easwaran H, Zhang Y, Griffiths E, Belinsky SA, Herman JG, Baylin SB, Carraway HE, Wang TH (2009) MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res 19:1455–1461

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bakalova R, Zhelev Z, Ohba H, Baba Y (2005) Quantum dot-conjugated hybridization probes for preliminary screening of siRNA sequences. J Am Chem Soc 127:11328–11335

    CAS  PubMed  Google Scholar 

  • Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL (2005) Protease-activated quantum dot probes. Biochem Biophys Res Commun 334:1317–1321

    CAS  PubMed  Google Scholar 

  • Charbonnière LJ, Hildebrandt N (2008) Lanthanide complexes and quantum dots: a bright wedding for resonance energy transfer. Eur J Inorg Chem 2008:3241–3251

    Google Scholar 

  • Chen Z, Li G, Zhang L, Jiang JF, Li Z, Peng ZH, Deng L (2008) A new method for the detection of ATP using a quantum-dot-tagged aptamer. Anal Bioanal Chem 392:1185–1188

    CAS  PubMed  Google Scholar 

  • Chen L, Zhang X, Zhou G, Xiang X, Ji X, Zheng Z, He Z, Wang H (2012a) Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal Chem 84:3200–3207

    CAS  PubMed  Google Scholar 

  • Chen MJ, Wu YS, Lin GF, Hou JY, Li M, Liu TC (2012b) Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein. Anal Chim Acta 741:100–105

    CAS  PubMed  Google Scholar 

  • Chi CW, Lao YH, Li YS, Chen LC (2011) A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to label-free thrombin detection. Biosens Bioelectron 26:3346–3352

    CAS  PubMed  Google Scholar 

  • Cissell KA, Campbell SA, Deo SK (2008) Rapid, single-step nucleic acid detection. Anal Bioanal Chem 391:2577–2581

    CAS  PubMed  Google Scholar 

  • Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigation using quantum-dot fluorophores. Chem Phys Chem 7:47–57

    CAS  PubMed  Google Scholar 

  • Cui D, Pan B, Zhang H, Gao F, Wu R, Wang J, He R, Asahi T (2008) Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal Chem 80:7996–8001

    CAS  PubMed  Google Scholar 

  • Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G (2012) Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6:2917–2924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dong HF, Gao WC, Yan F, Ji HX, Ju HX (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517

    CAS  PubMed  Google Scholar 

  • Freeman R, Bahshi L, Finder T, Gill R, Willner I (2009a) Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots. Chem Commun 764–766

    Google Scholar 

  • Freeman R, Li Y, Tel-Vered R, Sharon E, Elbaz J, Willner I (2009b) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134:653–656

    CAS  PubMed  Google Scholar 

  • Freeman R, Finder T, Gill R, Willner I (2010) Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. Nano Lett 10:2192–2196

    CAS  PubMed  Google Scholar 

  • Freeman R, Liu X, Willner I (2011a) Amplified multiplexed analysis of DNA by the exonuclease III-catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett 11:4456–4461

    CAS  PubMed  Google Scholar 

  • Freeman R, Liu XQ, Willner I (2011b) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604

    CAS  PubMed  Google Scholar 

  • Gill R, Willner I, Shweky I, Banin U (2005) Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. J Phys Chem B 109:23715–23719

    CAS  PubMed  Google Scholar 

  • Goldman ER, Medintz IL, Whitley JL, Hayhurst A, Clapp AR, Uyeda HT, Deschamps JR, Lassman ME, Mattoussi H (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127:6744–6751

    CAS  PubMed  Google Scholar 

  • Grigsby CL, Ho YP, Leong KW (2012) Understanding nonviral nucleic acid delivery with quantum dot-FRET nanosensors. Nanomedicine 7:565–577

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hermann T, Patel DJ (2000) Biochemistry-adaptive recognition by nucleic acid aptamers. Science 287:820–825

    CAS  PubMed  Google Scholar 

  • Huang X, Li L, Qian H, Ding C, Ren J (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum dots as acceptors. Angew Chem Int Ed 45:5140–5143

    CAS  Google Scholar 

  • Huang S, Xiao Q, He ZK, Liu Y, Tinnefeld P, Su XR (2008) A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun 5990–5992

    Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation and signaling. Cell 80:225–236

    CAS  PubMed  Google Scholar 

  • Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11:6396–6410

    PubMed Central  CAS  PubMed  Google Scholar 

  • Keefe AD, Pai S, Ellington AD (2010) Aptamers as therapeutics. Nat Drug Discovery Rev 9:537–550

    CAS  Google Scholar 

  • Kikkeri R, Padler-Karavani V, Diaz S, Verhagen A, Yu H, Cao HZ, Langereis MA, Groot RJD, Chen X, Varkit A (2013) Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples. Anal Chem 85:3864–3870

    CAS  PubMed  Google Scholar 

  • Kim GB, Kim YP (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2:127–138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JH, Morikis D, Ozkan M (2004) Adaptation of inorganic quantum dots for stable molecular beacons. Sens Actuators B 102:315–319

    CAS  Google Scholar 

  • Kim YP, Oh YH, Oh E, Ko S, Han MK, Kim HS (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634–4641

    CAS  PubMed  Google Scholar 

  • Kim GI, Kim KW, Oh MK, Sung YM (2009a) The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnol 20:175503

    Google Scholar 

  • Kim YP, Park S, Oh E, Oh YH, Kim HS (2009b) On-chip detection of protein glycosylation based on energy transfer between nanoparticles. Biosens Bioelectron 24:1189–1194

    CAS  PubMed  Google Scholar 

  • Kim H, Petryayeva E, Algar WR (2014) Enhancement of quantum dot Förster resonance energy transfer with paper matrices and application to proteolytic assays. IEEE J Sel Top Quant Electron 20:7300211

    Google Scholar 

  • Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17

    CAS  PubMed  Google Scholar 

  • Levy M, Cater SF, Ellington AD (2005) Quantum-dot aptamer beacons for the detection of proteins. Chem Bio Chem 6:2163–2166

    CAS  PubMed  Google Scholar 

  • Li M, Wang QY, Shi XD, Hornak LA, Wu NQ (2011) Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem 83:7061–7065

    CAS  PubMed  Google Scholar 

  • Liang GX, Pan HC, Li Y, Jiang LP, Zhang JR, Zhu JJ (2009) Near infrared sensing based on fluorescence resonance energy transfer between Mn:CdTe quantum dots and Au nanorods. Biosens Bioelectron 24:3693–3697

    CAS  PubMed  Google Scholar 

  • Liu J, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125

    CAS  PubMed  Google Scholar 

  • Liu M, Zhao H, Quan X, Chen S, Fan X (2010) Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem Commun 46:7909–7911

    CAS  Google Scholar 

  • Liu XQ, Freeman R, Golub E, Willner I (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano 5:7648–7655

    CAS  PubMed  Google Scholar 

  • Liu BY, Zeng F, Wu GF, Wu SZ (2012) Nanoparticles as scaffolds for FRET-based ratiometric detection of mercury ions in water with QDs as donors. Analyst 137:3717–3724

    CAS  PubMed  Google Scholar 

  • Long F, Gu CM, Gu AZ, Shi HC (2012a) Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform. Anal Chem 84:3646–3653

    CAS  PubMed  Google Scholar 

  • Long Y, Zhang LF, Zhang Y, Zhang CY (2012b) Single quantum dot based nanosensor for renin assay. Anal Chem 84:8846–8852

    CAS  PubMed  Google Scholar 

  • López-Otín C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    PubMed  Google Scholar 

  • Lowe SB, Dick JAG, Cohen BE, Stevens MM (2012) Multiplex sensing of protease and kitnase enzyme activity via orthogonal coupling of quantum dot peptide conjugates. ACS Nano 6:851–857

    CAS  PubMed  Google Scholar 

  • McLaurin EJ, Greytak AB, Bawendi MG, Nocera DG (2009) Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen. J Am Chem Soc 131:12994–13001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medintz IL, Mattoussi H (2009) Quatum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11

    Google Scholar 

  • Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM (2003) Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater 2:630–638

    CAS  PubMed  Google Scholar 

  • Medintz IL, Clapp AR, Melinger JS, Deschamps JR, Mattoussi H (2005) A reagentless biosensing assembly based on quantum dot-donor Forster resonance energy transfer. Adv Mater 17:2450–2455

    CAS  Google Scholar 

  • Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006a) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589

    CAS  PubMed  Google Scholar 

  • Medintz IL, Sapsford KE, Clapp AR, Pons T, Higashiya S, Welch JT, Mattoussi H (2006b) Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots. J Phys Chem B 110:10683–10690

    CAS  PubMed  Google Scholar 

  • Medintz IL, Berti L, Pons T, Grimes AF, English DS, Alessandrini A, Facci P, Mattoussi H (2007) A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett 7:1741–1748

    CAS  PubMed  Google Scholar 

  • Medintz IL, Pons T, Trammell SA, Grimes AF, English DS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2008) Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J Am Chem Soc 130:16745–16756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Medintz IL, Farrell D, Susumu K, Trammell SA, Deschamps JR, Brunel FM, Dawson PE, Mattoussi H (2009) Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes. Anal Chem 81:4831–4839

    CAS  PubMed  Google Scholar 

  • Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, Melinger JS, Blanco-Canosa JB, Dawson PE, Mattoussi H (2010) Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater 9:676–684

    CAS  PubMed  Google Scholar 

  • Niazov A, Freeman R, Girsh J, Willner I (2011) Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer. Sensors 11:10388–10397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nikiforov TT, Beechem JM (2006) Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. Anal Biochem 357:68–76

    CAS  PubMed  Google Scholar 

  • Noor MO, Petryayeva E, Tavares AJ, Uddayasankar U, Algar WR, Krull UJ (2013a) Building from the “Ground” up: developing interfacial chemistry for solid-phase nucleic acid hybridization assays based on quantum dots and fluorescence resonance energy transfer. Coord Chem Rev 263–264:25–52

    Google Scholar 

  • Noor MO, Shahmuradyan A, Krull UJ (2013b) Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem 85:1860–1867

    CAS  PubMed  Google Scholar 

  • Noor MO, Tavares AJ, Krull UJ (2013c) On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Anal Chim Acta 788

    Google Scholar 

  • Oh E, Lee D, Kim YP, Cha SY, Oh DB, Kang HA, Kim J, Kim HS (2006) Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation. Angew Chem Int Ed 45:7959–7963

    CAS  Google Scholar 

  • Opperwall SR, Divakaran A, Porter EG, Christians JA, DenHartigh AJ, Benson DE (2012) WIde dynamic range sensing with single quantum dot biosensors. ACS Nano 6:8078–8086

    CAS  PubMed  Google Scholar 

  • Petryayeva E, Algar WR (2013) Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal Chem 85:8817–8825

    CAS  PubMed  Google Scholar 

  • Petryayeva E, Algar WR, Krull UJ (2013) Adapting fluorescence resonance energy transfer with quantum dot donors for solid-phase hybridization assays in microtiter plate format. Langmuir 29:977–987

    CAS  PubMed  Google Scholar 

  • Pons T, Medintz IL, Wang X, English DS, Mattoussi H (2006) Solution-phase single quantum dot fluorescence resonance energy transfer. J Am Chem Soc 128:15324–15331

    CAS  PubMed  Google Scholar 

  • Prasuhn DE, Feltz A, Blanco-Canosa JB, Susumu K, Stewart MH, Mei BC, Yakovlev AV, Loukov C, Mallet JM, Oheim M, Dawson PE, Medintz IL (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano 4:5487–5497

    CAS  PubMed  Google Scholar 

  • Ruedas-Rama MJ, Hall EA (2008) Azamacrocycle activated quantum dot for zinc ion detection. Anal Chem 80:8260–8268

    CAS  PubMed  Google Scholar 

  • Ruedas-Rama MJ, Hall EAH (2009) Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese. Analyst 134:159–169

    CAS  PubMed  Google Scholar 

  • Sandros MG, Gao D, Benson DE (2005) A modular nanoparticle-based system for reagentless small molecule biosensing. J Am Chem Soc 127:12198–12199

    CAS  PubMed  Google Scholar 

  • Sandros MG, Shete V, Benson DE (2006) Selective, reversible, reagentless maltose biosensing with core-shell semiconducting nanoparticles. Analyst 131:229–235

    CAS  PubMed  Google Scholar 

  • Sapsford KE, Medintz IL, Golden JP, Deschamps JR, Uyeda HT, Mattoussi H (2004) Surface-immobilized self-assembled protein-based quantum dot nanoassemblies. Langmuir 20:7720–7728

    CAS  PubMed  Google Scholar 

  • Sapsford KE, Granek J, Deschamps JR, Boeneman K, Blanco-Canosa JB, Dawson PE, Susumu K, Stewart MH, Medintz IL (2011) Monitoring botulinum neurotoxin A activity with peptide-functionalized quantum dot resonance energy transfer sensors. ACS Nano 5:2687–2699

    CAS  PubMed  Google Scholar 

  • Shete VS, Benson DE (2009) Protein design provides lead(II) ion biosensors for imaging molecular fluxes around red blood cells. Biochemistry 48:462–470

    CAS  PubMed  Google Scholar 

  • Shi LF, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128:10378–10379

    CAS  PubMed  Google Scholar 

  • Shin S, Nam HY, Lee EJ, Jung W, Hah SS (2012) Molecular beacon-based quantitation of epithelial tumor marker mucin 1. Bioorg Med Chem Lett 22:6081–6084

    CAS  PubMed  Google Scholar 

  • Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128:13320–13321

    CAS  PubMed  Google Scholar 

  • So MK, Xu C, Loening AM, Gambhir SS, Rao J (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343

    CAS  PubMed  Google Scholar 

  • Somers RC, Lanning RM, Snee PT, Greytak AB, Jain RK, Bawendi MG, Nocera DG (2012) A nanocrystal-based ratiometric pH sensor for natural pH ranges. Chem Sci 3:2980–2985

    CAS  Google Scholar 

  • Stringer RC, Hoehn D, Grant SA (2008) Quantum dot-based biosensor for detection of human cardiac troponin I using a liquid-core waveguide. IEEE Sens J 8:295–300

    CAS  Google Scholar 

  • Sugawa M, Nishikawa S, Iwane AH, Biju V, Yanagida T (2010) Single-molecule FRET imaging for enzymatic reactions at high ligand concentrations. Small 6:346–350

    CAS  PubMed  Google Scholar 

  • Swain MD, Octain J, Benson DE (2008) Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconjug Chem 19:2520–2526

    CAS  PubMed  Google Scholar 

  • Tang B, Lao L, Xu K, Zhuo L, Ge J, Li Q, Yu L (2008) A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem Eur J 14:3637–3644

    CAS  PubMed  Google Scholar 

  • Tomasulo M, Yildiz I, Kaanumalle SL, Raymo FM (2006) pH-sensitive ligand for luminescent quantum dots. Langmuir 22:10284–10290

    CAS  PubMed  Google Scholar 

  • Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 2005:2424–2434

    Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    CAS  PubMed  Google Scholar 

  • Vannoy CH, Chong L, Le C, Krull UJ (2013) A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors. Anal Chim Acta 759:92–99

    CAS  PubMed  Google Scholar 

  • Wegner KD, Jin Z, Lindén S, Jennings TL, Hildebrandt N (2013) Quantum-dot-based förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano 7:7411–7419

    CAS  PubMed  Google Scholar 

  • Wei Q, Lee M, Yu X, Lee EK, Seong GH, Choo J, Cho YW (2006) Development of an open sandwich fluoroimmunoassay based on fluorescence resonance energy transfer. Anal Biochem 358:31–37

    CAS  PubMed  Google Scholar 

  • Whitney M, Svariar EN, Friedman B, Levin RA, Crisp JL, Glasgow HL, Lefkowitz R, Adams SR, Steinbach P, Nashi N, Nguyen QT, Tsien RY (2013) Ratiometric activatable cell-penetrating peptides provide rapid in vivo readout of thrombin activation. Angew Chem Int Ed 52:325–330

    CAS  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    CAS  PubMed  Google Scholar 

  • Wu CS, Oo MKK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4:5897–5904

    CAS  PubMed  Google Scholar 

  • Xia Z, Xiang Y, So MK, Koh AL, Sinclair R, Rao J (2008) Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal Chem 80:8649–8655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu L, Zhu Y, Ma W, Kuang H, Liu L, Wang L, Xu C (2011) Sensitive and specific DNA detection based on nicking endonuclease-assisted fluorescence resonance energy transfer amplification. J Phys Chem C 115:16315–16321

    CAS  Google Scholar 

  • Yao H, Zhang Y, Xiao F, Xia Z, Rao J (2007) Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew Chem Int Ed 46:4346–4349

    CAS  Google Scholar 

  • Zhang CY, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82:1921–1927

    CAS  PubMed  Google Scholar 

  • Zhang CY, Johnson LW (2006) Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Anal Chem 78:5532–5537

    CAS  PubMed  Google Scholar 

  • Zhang CY, Johnson LW (2007) Quantifying RNA-eptide interaction by single-quantum dot-based nanosensor: an approach fair drug screening. Anal Chem 79:7775–7781

    CAS  PubMed  Google Scholar 

  • Zhang CY, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang CY (2012) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84:224–231

    CAS  PubMed  Google Scholar 

  • Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831

    CAS  PubMed  Google Scholar 

  • Zhou D, Ying L, Hong X, Hall EA, Abell C, Klenerman D (2008) A compact functional quantum dot-DNA conjugate: preparation, hybridization, and specific label-free DNA detection. Langmuir 24:1659–1664

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Russ Algar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Wu, M., Algar, W.R. (2015). Semiconductor Quantum Dots and Energy Transfer for Optical Sensing and Bioanalysis: Applications. In: Vestergaard, M., Kerman, K., Hsing, IM., Tamiya, E. (eds) Nanobiosensors and Nanobioanalyses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55190-4_11

Download citation

Publish with us

Policies and ethics