Skip to main content

Regulation of Active Zone Ca2+ Channels

  • Chapter
  • First Online:
  • 1137 Accesses

Abstract

At the presynaptic active zone, Ca2+ influx through voltage-gated CaV2 channels triggers fast, synchronous neurotransmitter release from synaptic vesicles. Synaptic vesicles localized to release sites are tightly coupled with presynaptic CaV2 channels whereby neurotransmitter release is proportional to the Ca2+ current, or the Ca2+ concentration, with the third or fourth power. CaV2 channel activity is regulated directly or indirectly by multiple mechanisms through protein-protein interactions, before and after synaptic vesicle exocytosis, resulting in fine-tuning of Ca2+ entry that effectively modulates basal neurotransmitter release and underlies presynaptic short-term plasticity. Presynaptic active zone proteins form a large complex, which tether CaV2 channels, dock and prime synaptic vesicles at release sites, and possess regulatory function. CaV2 channel modulation, which is upstream of synaptic vesicle exocytosis, that leads to changes in Ca2+ influx provides a powerful and efficient way to regulate synaptic transmission. In this chapter, we review progress toward understanding the cellular and molecular mechanisms that modulate the activity of Ca2+ channels at the presynaptic active zone. A remaining challenge is to understand how these processes work together to shape synaptic transmission and synaptic plasticity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796–803

    CAS  PubMed  Google Scholar 

  • Altier C, Dale CS, Kisilevsky AE, Chapman K, Castiglioni AJ, Matthews EA, Evans RM, Dickenson AH, Lipscombe D, Vergnolle N, Zamponi GW (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27:6363–6373

    CAS  PubMed  Google Scholar 

  • Artim DE, Meriney SD (2000) G-protein-modulated Ca2+ current with slowed activation does not alter the kinetics of action potential-evoked Ca2+ current. J Neurophysiol 84:2417–2425

    CAS  PubMed  Google Scholar 

  • Atlas D (2001) Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J Neurochem 77:972–985

    CAS  PubMed  Google Scholar 

  • Atluri PP, Regehr WG (1998) Delayed release of neurotransmitter from cerebellar granule cells. J Neurosci 18:8214–8227

    CAS  PubMed  Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1987) Calcium action in synaptic transmitter release. Annu Rev Neurosci 10:633–693

    CAS  PubMed  Google Scholar 

  • Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270:1971–1974

    CAS  PubMed  Google Scholar 

  • Barrett EF, Stevens CF (1972) The kinetics of transmitter release at the frog neuromuscular junction. J Physiol 227:691–708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153–156

    CAS  PubMed  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    CAS  PubMed  Google Scholar 

  • Bergsman JB, Tsien RW (2000) Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J Neurosci 20:4368–4378

    CAS  PubMed  Google Scholar 

  • Boland LM, Bean BP (1993) Modulation of N-type calcium channels in bullfrog sympathetic neurons by luteinizing hormone- releasing hormone: kinetics and voltage dependence. J Neurosci 13:516–533

    CAS  PubMed  Google Scholar 

  • Borst JG, Sakmann B (1998) Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol 513(Pt 1):149–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braunewell KH, Gundelfinger ED (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 295:1–12

    CAS  PubMed  Google Scholar 

  • Brody D, Yue D (2000) Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 20:889–898

    CAS  PubMed  Google Scholar 

  • Brody DL, Patil PG, Mulle JG, Snutch TP, Yue DT (1997) Bursts of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca2+ channels in HEK 293 cells. J Physiol 499:637–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown DA, Sihra TS (2008) Presynaptic signaling by heterotrimeric G-proteins. Handb Exp Pharmacol 184:207–260

    CAS  PubMed  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Byung-Chang S, Leal K, Hille B (2010) Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-biphosphate. Neuron 67:224–238

    Google Scholar 

  • Canti C, Page KM, Stephens GJ, Dolphin AC (1999) Identification of residues in the N terminus of alpha 1B critical for inhibition of the voltage-dependent calcium channel by Gβγ. J Neurosci 19:6855–6864

    CAS  PubMed  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1 is required for presynaptic long-term potentiation. Nature 415:327–330

    CAS  PubMed  Google Scholar 

  • Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci 868:144–159

    CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated calcium channels. Annu Rev Cell Dev Biol 16:521–555

    CAS  PubMed  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    CAS  PubMed  Google Scholar 

  • Chang BH, Mukherji S, Soderling TR (1998) Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci U S A 95:10890–10895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman PF, Frenguelli BG, Smith A, Chen CM, Silva AJ (1995) The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14:591–597

    CAS  PubMed  Google Scholar 

  • Chaudhuri D, Chang SY, DeMaria CD, Alvania RS, Soong TW, Yue DT (2004) Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels. J Neurosci 24:6334–6342

    CAS  PubMed  Google Scholar 

  • Cohen MW, Jones OT, Angelides KJ (1991) Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J Neurosci 11:1032–1039

    CAS  PubMed  Google Scholar 

  • Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M (2010) Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 285:24968–24976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J Biol Chem 276:32756–32762

    CAS  PubMed  Google Scholar 

  • Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 512:723–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28:220–228

    CAS  PubMed  Google Scholar 

  • Davies JN, Jarvis SE, Zamponi GW (2011) Bipartite syntaxin 1A interactions mediate CaV2.2 calcium channel regulation. Biochem Biophys Res Commun 411:562–568

    CAS  PubMed  Google Scholar 

  • Del Castillo J, Katz B (1954) Changes in end-plate activity produced by presynaptic polarization. J Physiol 124:586–604

    PubMed Central  Google Scholar 

  • Delmas P, Coste B, Gamper N, Shapiro MS (2005) Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 47:179–182

    CAS  PubMed  Google Scholar 

  • DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489

    CAS  PubMed  Google Scholar 

  • Ding J, Peterson JD, Surmeier DJ (2008) Corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci 28:6483–6492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG (2000) Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20:1374–1385

    CAS  PubMed  Google Scholar 

  • Dodge FA Jr, Rahamimoff R (1967) Cooperative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 193:419–432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620

    CAS  PubMed  Google Scholar 

  • Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98

    CAS  PubMed  Google Scholar 

  • Elmslie KS, Zhou W, Jones SW (1990) LHRH and GTP-gamma-S modify calcium current activation in bullfrog sympathetic neurons. Neuron 5:75–80

    CAS  PubMed  Google Scholar 

  • Erickson MG, Badr AA, Peterson BZ, Yue DT (2001) Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31:973–985

    CAS  PubMed  Google Scholar 

  • Fernandez-Chacon R, Konigstorfer A, Gerber SH et al (2001) Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49

    CAS  PubMed  Google Scholar 

  • Few AP, Nanou E, Scheuer T, Catterall WA (2011) Molecular determinants of CaV2.1 channel regulation by calcium-binding protein-1. J Biol Chem 286:41917–41923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797–807

    CAS  PubMed  Google Scholar 

  • Furukawa T, Nukada T, Mori Y, Wakamori M, Fujita Y, Ishida H, Fukuda K, Kato S, Yoshii M (1998) Differential interactions of the C terminus and the cytoplasmic I-II loop of neuronal Ca2+ channels with G-protein alpha and beta gamma subunits. I. Molecular determination. J Biol Chem 273:17585–17594

    CAS  PubMed  Google Scholar 

  • Gasparini S, Kasyanov AM, Pietrobon D, Voronin LL, Cherubini E (2001) Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J Neurosci 21:8715–8721

    CAS  PubMed  Google Scholar 

  • Goda Y, Stevens CF (1994) Two components of transmitter release at a central synapse. Proc Natl Acad Sci U S A 91:12942–12946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haeseleer F, Palczewski K (2002) Calmodulin and Ca2+-binding proteins (CaBPs): variations on a theme. Adv Exp Med Biol 514:303–317

    CAS  PubMed  Google Scholar 

  • Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K (2000) Five members of a novel Ca2+-binding protein (CaBP) subfamily with similarity to calmodulin. J Biol Chem 275:1247–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K (2002) Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun 290:615–623

    CAS  PubMed  Google Scholar 

  • Hagler DJ Jr, Goda Y (2001) Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J Neurophysiol 85:2324–2334

    CAS  PubMed  Google Scholar 

  • Han Y, Kaeser PS, Sudhof TC, Schneggenburger R (2011) RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69:304–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson PI, Heuser JE, Jahn R (1997) Neurotransmitter release – four years of SNARE complexes. Curr Opin Neurobiol 7:310–315

    CAS  PubMed  Google Scholar 

  • Harkins AB, Cahill AL, Powers JF, Tischler AS, Fox AP (2004) Deletion of the synaptic protein interaction site of the N-type (CaV2.2) calcium channel inhibits secretion in mouse pheochromocytoma cells. Proc Natl Acad Sci U S A 101:15219–15224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G protein βγ subunits. Nature 380:258–262

    CAS  PubMed  Google Scholar 

  • Herlitze S, Hockerman GH, Scheuer T, Catterall WA (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel a1A subunit. Proc Natl Acad Sci U S A 94:1512–1516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34:411–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536

    CAS  PubMed  Google Scholar 

  • Hirling H, Scheller RH (1996) Phosphorylation of synaptic vesicle proteins: modulation of the alpha SNAP interaction with the core complex. Proc Natl Acad Sci U S A 21:11945–11949

    Google Scholar 

  • Hofmann F, Lacinova L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87

    CAS  PubMed  Google Scholar 

  • Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA (2012) α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486:122–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbard JI (1963) Repetitive stimulation at the mammalian neuromuscular junction, and the mobilization of transmitter. J Physiol 169:641–662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380:255–258

    CAS  PubMed  Google Scholar 

  • Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 33:131–151

    CAS  PubMed  Google Scholar 

  • Inchauspe CCG, Martini FJ, Forsythe ID, Uchitel OD (2004) Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal. J Neurosci 24:10379–10383

    CAS  PubMed  Google Scholar 

  • Inchauspe CG, Forsythe ID, Uchitel OD (2007) Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels. J Physiol 584:835–851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa T, Kaneko M, Shin HS, Takahashi T (2005) Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol 568:199–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarvis SE, Zamponi GW (2001) Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 21:2939–2948

    CAS  PubMed  Google Scholar 

  • Jarvis SE, Magga JM, Beedle AM, Braun JE, Zamponi GW (2000) G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gbetagamma. J Biol Chem 275:6388–6394

    CAS  PubMed  Google Scholar 

  • Jiang X, Lautermilch NJ, Watari H, Westenbroek RE, Scheuer T, Catterall WA (2008) Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proc Natl Acad Sci U S A 105:341–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Sudhof TC (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kajikawa Y, Saitoh N, Takahashi T (2001) GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proc Natl Acad Sci U S A 98:8054–8058

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195:481–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katz B, Miledi R (1970) Further study of the role of calcium in synaptic transmission. J Physiol 207:789–801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keith RK, Poage RE, Yokoyama CT, Catterall WA, Meriney SD (2007) Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo. J Neurosci 27:265–269

    CAS  PubMed  Google Scholar 

  • Kennedy MB, Bennett MK, Bulleit RF, Erondu NE, Jennings VR, Miller SG, Molloy SS, Patton BL, Schenker LJ (1990) Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol 55:101–110

    CAS  PubMed  Google Scholar 

  • Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M et al (2007) RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10:691–701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch M, Holt M (2012) Coupling exo- and endocytosis: an essential role for PIP2 at the synapse. Biochim Biophys Acta 1821:1114–1132

    CAS  PubMed  Google Scholar 

  • Lautermilch NJ, Few AP, Scheuer T, Catterall WA (2005) Modulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J Neurosci 25:7062–7070

    CAS  PubMed  Google Scholar 

  • Leal K, Mochida S, Scheuer T, Catterall WA (2012) Fine-tuning synaptic plasticity by modulation of CaV2.1 channels with calcium sensor proteins. Proc Natl Acad Sci U S A 109(42):17069–17074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Calcium/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159

    CAS  PubMed  Google Scholar 

  • Lee A, Scheuer T, Catterall WA (2000) Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 20:6830–6838

    CAS  PubMed  Google Scholar 

  • Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, Catterall WA (2002) Differential modulation of CaV2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neurosci 5:210–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee A, Zhou H, Scheuer T, Catterall WA (2003) Molecular determinants of Ca2+/calmodulin-dependent regulation of CaV2.1 channels. Proc Natl Acad Sci U S A 100:16059–16064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leveque C, el Far O, Martin-Moutot N et al (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J Biol Chem 269:6306–6312

    CAS  PubMed  Google Scholar 

  • Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39:951–960

    CAS  PubMed  Google Scholar 

  • Li B, Zhong H, Scheuer T, Catterall WA (2004) Functional role of a C-terminal Gbetagamma-binding domain of CaV2.2 channels. Mol Pharmacol 66:761–769

    CAS  PubMed  Google Scholar 

  • Llinas R, Steinberg IZ, Walton K (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys J 33:323–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A 82:3035–3039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J Physiol 436:257–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu FM, Hawkins RD (2006) Presynaptic and postsynaptic Ca2+ and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci U S A 103:4264–4269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu T, Trussell LO (2000) Inhibitory transmission mediated by asynchronous transmitter release. Neuron 26:683–694

    CAS  PubMed  Google Scholar 

  • Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550

    CAS  PubMed  Google Scholar 

  • Magupalli VG, Mochida S, Jiang X, Westenbroek RE, Nairn AC, Scheuer T, Catterall WA (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 channels. J Biol Chem 288:4637–4648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca2+ channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 406:104–111

    CAS  PubMed  Google Scholar 

  • Mikhaylova M, Hradsky J, Kreutz MR (2011) Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 118:695–713

    CAS  PubMed  Google Scholar 

  • Miljanich GP, Ramachandran J (1995) Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol 35:707–734

    CAS  PubMed  Google Scholar 

  • Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17:781–788

    CAS  PubMed  Google Scholar 

  • Mochida S, Yokoyama CT, Kim DK, Itoh K, Catterall WA (1998) Evidence for a voltage-dependent enhancement of neurotransmitter release mediated via the synaptic protein interaction site of N-type Ca2+ channels. Proc Natl Acad Sci U S A 24:14523–14528

    Google Scholar 

  • Mochida S, Westenbroek RE, Yokoyama CT, Zhong H, Myers SJ, Scheuer T, Itoh K, Catterall WA (2003) Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proc Natl Acad Sci U S A 100:2819–2824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic CaV2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57:210–216

    CAS  PubMed  Google Scholar 

  • Nanou E, Martinez GQ, Scheuer T, Catterall WA (2012) Molecular determinants of modulation of CaV2.1 channels by visinin-like protein 2. J Biol Chem 287:504–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishiki T, Augustine GJ (2004) Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J Neurosci 24:6127–6132

    PubMed  Google Scholar 

  • Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem 63:823–867

    CAS  PubMed  Google Scholar 

  • Otto H, Hanson PI, Jahn R (1997) Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc Natl Acad Sci U S A 94:6197–6201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park Y et al (2012) Controlling synaptotagmin activity by electrostatic screening. Nat Struct Mol Biol 19:991–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterlini M, Revilla V, Grant AL, Wisden W (2000) Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience 99:205–216

    CAS  PubMed  Google Scholar 

  • Poncer JC, McKinney RA, Gahwiler BH, Thompson SM (1997) Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18:463–472

    CAS  PubMed  Google Scholar 

  • Pozzi D, Condliffe S, Bozzi Y et al (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci U S A 105:323–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin N, Platano D, Olcese R, Stefani E, Birnbaumer L (1997) Direct interaction of Gβγ with a C-terminal Gβγ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc Natl Acad Sci U S A 94:8866–8871

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rahamimoff R, Yaari Y (1973) Delayed release of transmitter at the frog neuromuscular junction. J Physiol 228:241–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raingo J, Castiglioni AJ, Lipscombe D (2007) Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10:285–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP, Catterall WA (1996) Isoform specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci U S A 93:7363–7368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rettig J, Heinemann C, Ashery U et al (1997) Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J Neurosci 17:6647–6656

    CAS  PubMed  Google Scholar 

  • Ruiz-Velasco V, Ikeda SR (2000) Multiple G-protein βγ combinations produce voltage-dependent inhibition of N-type calcium channels in rat superior cervical ganglion neurons. J Neurosci 20:2183–2191

    CAS  PubMed  Google Scholar 

  • Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172

    CAS  PubMed  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Sudhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326

    CAS  PubMed  Google Scholar 

  • Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    CAS  PubMed  Google Scholar 

  • Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    CAS  PubMed  Google Scholar 

  • Sheng ZH, Yokoyama CT, Catterall WA (1997) Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci U S A 94:5405–5410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng J, He L, Zheng H, Xue L, Luo F, Shin W, Sun T, Kuner T, Yue DT, Wu LG (2012) Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci 15:998–1008

    CAS  PubMed  Google Scholar 

  • Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    CAS  PubMed  Google Scholar 

  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:297–298

    Google Scholar 

  • Spafford JD, Zamponi GW (2003) Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr Opin Neurobiol 13:308–314

    CAS  PubMed  Google Scholar 

  • Spafford JD, Munno DW, Van Nierop P, Feng ZP, Jarvis SE, Gallin WJ, Smit AB, Zamponi GW, Syed NI (2003) Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J Biol Chem 278:4258–4267

    CAS  PubMed  Google Scholar 

  • Stanley EF (1993) Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11:1007–1011

    CAS  PubMed  Google Scholar 

  • Stanley EF (2003) Syntaxin I modulation of presynaptic calcium channel inactivation revealed by botulinum toxin C1. Eur J Neurosci 17:1303–1305

    PubMed  Google Scholar 

  • Stanley EF, Mirotznik RR (1997) Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385:340–343

    CAS  PubMed  Google Scholar 

  • Stephens GJ, Mochida S (2005) G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 563:765–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strock J, Diverse-Pierluissi MA (2004) Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol Pharmacol 66:1071–1076

    CAS  PubMed  Google Scholar 

  • Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    CAS  PubMed  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Sudhof TC (2012) The presynaptic active zone. Neuron 75:11–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabo Z, Obermair GJ, Cooper CB, Zamponi GW, Flucher BE (2006) Role of the synprint site in presynaptic targeting of the calcium channel CaV2.2 in hippocampal neurons. Eur J Neurosci 24:709–718

    PubMed  Google Scholar 

  • Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594–597

    CAS  PubMed  Google Scholar 

  • Trus M, Wiser O, Goodnough MC, Atlas D (2001) The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca2+ channels. Neuroscience 104:599–607

    CAS  PubMed  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438

    CAS  PubMed  Google Scholar 

  • Tsien RW, Elinor PT, Horne WA (1991) Molecular diversity of voltage-dependent calcium channels. Trends Neurosci 12:349–354

    CAS  Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108–15 cells. Proc Natl Acad Sci U S A 83:9832–9836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vendel AC, Terry MD, Striegel AR et al (2006) Alternative splicing of the voltage-gated Ca2+ channel β4 subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. J Neurosci 26:2635–2644

    CAS  PubMed  Google Scholar 

  • von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of Held. Nat Rev Neurosci 3:53–64

    Google Scholar 

  • Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575

    CAS  PubMed  Google Scholar 

  • Weiss N (2006) The calcium channel β4a subunit: a scaffolding protein between voltage-gated calcium channel and presynaptic vesicle-release machinery? J Neurosci 26:6117–6118

    CAS  PubMed  Google Scholar 

  • Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099–1115

    CAS  PubMed  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM et al (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    CAS  PubMed  Google Scholar 

  • Wiser O, Bennett MK, Atlas D (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J 15:4100–4110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiser O, Tobi D, Trus M, Atlas D (1997) Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett 404:203–207

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1997) Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci 20:204–212

    CAS  PubMed  Google Scholar 

  • Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4.5)P-2. Nature 419:947–952

    CAS  PubMed  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645

    CAS  PubMed  Google Scholar 

  • Xu J, He L, Wu LG (2007) Role of Ca2+ channels in short-term synaptic plasticity. Curr Opin Neurobiol 17:352–359

    CAS  PubMed  Google Scholar 

  • Yao J, Gaffaney Jon D, Kwon Sung E, Chapman Edwin R (2011) Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 147:666–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama CT, Sheng ZH, Catterall WA (1997) Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 17:6929–6938

    CAS  PubMed  Google Scholar 

  • Yokoyama CT, Myers SJ, Fu J, Mockus SM, Scheuer T, Catterall WA (2005) Mechanism of SNARE protein binding and regulation of CaV2 channels by phosphorylation of the synaptic protein interaction site. Mol Cell Neurosci 28:1–17

    CAS  PubMed  Google Scholar 

  • Yoshida A, Oho C, Omori A, Kuwahara R, Ito T, Takahashi M (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J Biol Chem 267:24925–24928

    CAS  PubMed  Google Scholar 

  • Yoshihara M, Littleton JT (2002) Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36:897–908

    CAS  PubMed  Google Scholar 

  • Zamponi GW, Snutch TP (1998) Decay of prepulse facilitation of N type calcium channels during G protein inhibition is consistent with binding of a single Gbeta subunit. Proc Natl Acad Sci U S A 95:4035–4039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel alpha1 subunit. Nature 385:442–446

    CAS  PubMed  Google Scholar 

  • Zhong H, Yokoyama C, Scheuer T, Catterall WA (1999) Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 2:939–941

    CAS  PubMed  Google Scholar 

  • Zhu LQ, Liu D, Hu J et al (2010) GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J Neurosci 30:3624–3633

    CAS  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Leal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Leal, K., Mochida, S. (2015). Regulation of Active Zone Ca2+ Channels. In: Mochida, S. (eds) Presynaptic Terminals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55166-9_9

Download citation

Publish with us

Policies and ethics