Skip to main content

The Synaptic Vesicle V-ATPase: A Regulatory Link Between Loading and Fusion?

  • Chapter
  • First Online:
Presynaptic Terminals
  • 1379 Accesses

Abstract

The vacuolar proton pump (V-ATPase) is a huge multi-subunit complex composed of two distinct non-covalently associated sectors. The cytosolic V1 sector hydrolyses ATP, providing the energy for the V0 membrane sector to translocate protons into the vesicle lumen. The proton gradient is then used by vesicular transporters to load synaptic vesicles with specific neurotransmitters. The primary role of the V-ATPase in vesicle loading is widely accepted. However, multiple studies in a variety of model organisms point to an additional general role of the V0 sector in downstream events, notably in regulating SNARE-mediated membrane fusion. This chapter outlines the molecular pharmacology of the V-ATPase and its role in the synaptic vesicle cycle. It then focuses specifically on molecular interactions between V0 subunits and synaptic vesicle trafficking proteins and reviews their relevance to late steps in neurotransmitter release. While this secondary role for the V-ATPase membrane sector is not yet fully established, we speculate that it could provide a regulatory link between vesicle filling and fusion, acting as a filter that allows loaded vesicles to engage the fusion machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almers W (2001) Fusion needs more than SNAREs. Nature 409:567–568

    Article  CAS  PubMed  Google Scholar 

  • Almers W, Tse FW (1990) Transmitter release from synapses: does a preassembled fusion pore initiate exocytosis? Neuron 4:813–818

    Article  CAS  PubMed  Google Scholar 

  • Bayer MJ, Reese C, Buhler S, Peters C, Mayer A (2003) Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 162:211–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bharat TA, Malsam J, Hagen WJ, Scheutzow A, Sollner TH, Briggs JA (2014) SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion. EMBO Rep 15:308–314

    Article  CAS  PubMed  Google Scholar 

  • Birman S, Israel M, Lesbats B, Morel N (1986) Solubilization and partial purification of a presynaptic membrane protein ensuring calcium-dependent acetylcholine release from proteoliposomes. J Neurochem 47:433–444

    Article  CAS  PubMed  Google Scholar 

  • Birman S, Meunier FM, Lesbats B, Le Caer JP, Rossier J, Israel M (1990) A 15 kDa proteolipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett 261:303–306

    Article  CAS  PubMed  Google Scholar 

  • Bowman BJ, McCall ME, Baertsch R, Bowman EJ (2006) A model for the proteolipid ring and bafilomycin/concanamycin-binding site in the vacuolar ATPase of Neurospora crassa. J Biol Chem 281:31885–31893

    Article  CAS  PubMed  Google Scholar 

  • Breton S, Smith PJ, Lui B, Brown D (1996) Acidification of the male reproductive tract by a proton pumping (H+)-ATPase. Nat Med 2:470–472

    Article  CAS  PubMed  Google Scholar 

  • Bugnard E, Sors P, Roulet E, Bloc A, Loctin F, Dunant Y (1999) Morphological changes related to reconstituted acetylcholine release in a release-deficient cell line. Neuroscience 94(1):329–338

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409

    Article  CAS  PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15:675–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clare DK, Orlova EV, Finbow MA, Harrison MA, Findlay JBC, Saibil HR (2006) An expanded and flexible form of the vacuolar ATPase membrane sector. Structure 14:1149–1156

    Article  CAS  PubMed  Google Scholar 

  • Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER (1999) Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24:363–376

    Article  CAS  PubMed  Google Scholar 

  • Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    Article  PubMed Central  Google Scholar 

  • Dermietzel R, Volker M, Hwang TK, Berzborn RJ, Meyer HE (1989) A 16 kDa protein co-isolating with gap junctions from brain tissue belonging to the class of proteolipids of the vacuolar H+-ATPases. FEBS Lett 253:1–5

    Article  CAS  PubMed  Google Scholar 

  • Di Giovanni J, Boudkkazi S, Mochida S, Bialowas A, Samari N, Leveque C, Youssouf F, Brechet A, Iborra C, Maulet Y, Moutot N, Debanne D, Seagar M, El Far O (2010a) V-ATPase membrane sector associates with synaptobrevin to modulate neurotransmitter release. Neuron 67:268–279

    Article  PubMed  Google Scholar 

  • Di Giovanni J, Iborra C, Maulet Y, Leveque C, El Far O, Seagar M (2010b) Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin. J Biol Chem 285:23665–23675

    Article  PubMed Central  PubMed  Google Scholar 

  • Diao J, Cipriano DJ, Zhao M, Zhang Y, Shah S, Padolina MS, Pfuetzner RA, Brunger AT (2013) Complexin-1 enhances the on-rate of vesicle docking via simultaneous SNARE and membrane interactions. J Am Chem Soc 135:15274–15277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards RH (2007) The neurotransmitter cycle and quantal size. Neuron 55:835–858

    Article  CAS  PubMed  Google Scholar 

  • Einhorn Z, Trapani JG, Liu Q, Nicolson T (2012) Rabconnectin3alpha promotes stable activity of the H+ pump on synaptic vesicles in hair cells. J Neurosci 32:11144–11156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • EL Far O, Seagar M (2011) A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem 117:603–612

    PubMed  Google Scholar 

  • Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    Article  CAS  PubMed  Google Scholar 

  • Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191–193

    Article  CAS  PubMed  Google Scholar 

  • Finbow ME, Pitts JD (1993) Is the gap junction channel–the connexon–made of connexin or ductin? J Cell Sci 106:463–471

    CAS  PubMed  Google Scholar 

  • Galli T, McPherson PS, De Camilli P (1996) The V0 sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a Triton X-100-resistant, freeze-thawing sensitive, complex. J Biol Chem 271:2193–2198

    Article  CAS  PubMed  Google Scholar 

  • Giraudo CG, Hu C, You D, Slovic AM, Mosharov EV, Sulzer D, Melia TJ, Rothman JE (2005) SNAREs can promote complete fusion and hemifusion as alternative outcomes. J Cell Biol 170:249–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R (2012) Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–1584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heuser JE, Reese TS, Landis DM (1974) Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol 3:109–131

    Article  CAS  PubMed  Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  CAS  PubMed  Google Scholar 

  • Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ (2005) The v-ATPase V(0) subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huntwork S, Littleton JT (2007) A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci 10:1235–1237

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Lorenzo A, Skinner M, El Annan J, Futai M, Sun-Wada GH, Bourgoin S, Casanova J, Wildeman A, Bechoua S, Ausiello DA, Brown D, Marshansky V (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136

    Article  CAS  PubMed  Google Scholar 

  • Israel M, Morel N, Lesbats B, Birman S, Manaranche R (1986) Purification of a presynaptic membrane protein that mediates a calcium-dependent translocation of acetylcholine. Proc Natl Acad Sci U S A 83:9226–9230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin D, Muramatsu S-i, Shimizu N, Yokoyama S, Hirai H, Yamada K, Liu H-X, Higashida C, Hashii M, Higashida A, Asano M, Ohkuma S, Higashida H (2012) Dopamine release via the vacuolar ATPase V0 sector c-subunit, confirmed in N18 neuroblastoma cells, results in behavioral recovery in hemiparkinsonian mice. Neurochem Int 61:907–912

    Article  CAS  PubMed  Google Scholar 

  • Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  • Karatekin E, Di Giovanni J, Iborra C, Coleman J, O’Shaughnessy B, Seagar M, Rothman JE (2010) A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci U S A 107:3517–3521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, Pignolo RJ, Koczon-Jaremko B, Lorenzo J, Choi Y (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 12:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Edwards RH (1997) The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu Rev Neurosci 20:125–156

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Holliday LS, Zhang L, Dunn WA Jr, Gluck SL (2001) Interaction between aldolase and vacuolar H+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J Biol Chem 276:30407–30413

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Ammar D, Ives H, Albrecht F, Gluck SL (2007) Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282:24495–24503

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Su L, Seven AB, Xu Y, Rizo J (2013) Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malsam J, Seiler F, Schollmeier Y, Rusu P, Krause JM, Sollner TH (2009) The carboxy-terminal domain of complexin I stimulates liposome fusion. Proc Natl Acad Sci U S A 106:2001–2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshansky V, Futai M (2008) The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20:415–426

    Article  CAS  PubMed  Google Scholar 

  • Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maycox PR, Hell JW, Jahn R (1990) Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci 13:83–87

    Article  CAS  PubMed  Google Scholar 

  • Merkulova M, Hurtado-Lorenzo A, Hosokawa H, Zhuang Z, Brown D, Ausiello DA, Marshansky V (2011) Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol 300:C1442–C1455

    Article  CAS  Google Scholar 

  • Morel N, Dunant Y, Israel M (2001) Neurotransmitter release through the V0 sector of V-ATPase. J Neurochem 79:485–488

    Article  CAS  PubMed  Google Scholar 

  • Morel N, Dedieu JC, Philippe JM (2003) Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J cell sci 116:4751–4762

    Article  CAS  PubMed  Google Scholar 

  • Moriyama Y, Maeda M, Futai M (1992) The role of V-ATPase in neuronal and endocrine systems. J Exp Biol 172:171–178

    CAS  PubMed  Google Scholar 

  • Muller D, Garcia-Segura LM, Parducz A, Dunant Y (1987) Brief occurrence of a population of presynaptic intramembrane particles coincides with transmission of a nerve impulse. Proc Natl Acad Sci U S A 84:590–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Lill H (1994) Porters and neurotransmitter transporters. J Exp Biol 196:213–228

    CAS  PubMed  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases – nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  • Nishi T, Kawasaki-Nishi S, Forgac M (2003) Expression and function of the mouse V-ATPase d subunit isoforms. J Biol Chem 278:46396–46402

    Article  CAS  PubMed  Google Scholar 

  • Peper K, Dreyer F, Sandri C, Akert K, Moor H (1974) Structure and ultrastructure of the frog motor endplate. A freeze-etching study. Cell Tissue Res 149:437–455

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JMG, Garcia-Garcia A (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35:707–713

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sayans M, Suarez-Penaranda JM, Barros-Angueira F, Diz PG, Gandara-Rey JM, Garcia-Garcia A (2012) An update in the structure, function, and regulation of V-ATPases: the role of the C subunit. Braz J Biol 72:189–198

    Article  CAS  PubMed  Google Scholar 

  • Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Mayer A (1998) Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature 396:575–580

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A (2001) Trans complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Article  CAS  PubMed  Google Scholar 

  • Poea-Guyon S, Ammar MR, Erard M, Amar M, Moreau AW, Fossier P, Gleize V, Vitale N, Morel N (2013) The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J Cell Biol 203:283–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi J, Wang Y, Forgac M (2007) The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation. J Bioenerg Biomembr 39:423–426

    Article  CAS  PubMed  Google Scholar 

  • Quetglas S, Iborra C, Sasakawa N, De Haro L, Kumakura K, Sato K, Leveque C, Seagar M (2002) Calmodulin and lipid binding to synaptobrevin regulates calcium-dependent exocytosis. EMBO J 21:3970–3979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104:71–81

    Article  CAS  PubMed  Google Scholar 

  • Reim K, Wegmeyer H, Brandstatter JH, Xue M, Rosenmund C, Dresbach T, Hofmann K, Brose N (2005) Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol 169:669–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Risselada HJ, Grubmüller H (2012) How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 22:187–196

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli SO, Betz WJ (2005) Synaptic vesicle pools. Nat Rev 6:57–69

    Article  CAS  Google Scholar 

  • Schaub JR, Lu X, Doneske B, Shin YK, McNew JA (2006) Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat Struct Mol Biol 13:748–750

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger PH, Blair HC, Teitelbaum SL, Edwards JC (1997) Characterization of the osteoclast ruffled border chloride channel and its role in bone resorption. J Biol Chem 272:18636–18643

    Article  CAS  PubMed  Google Scholar 

  • Sumner J-P, Dow JAT, Earley FGP, Klein U, Jäger D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Article  CAS  PubMed  Google Scholar 

  • Sun-Wada GH, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 119:4531–4540

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Thomas L, Betz H (1990) Synaptophysin binds to physophilin, a putative synaptic plasma membrane protein. J Cell Biol 111:2041–2052

    Article  CAS  PubMed  Google Scholar 

  • Tokumaru H, Umayahara K, Pellegrini LL, Ishizuka T, Saisu H, Betz H, Augustine GJ, Abe T (2001) SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104:421–432

    Article  CAS  PubMed  Google Scholar 

  • Tokumaru H, Shimizu-Okabe C, Abe T (2008) Direct interaction of SNARE complex binding protein synaphin/complexin with calcium sensor synaptotagmin 1. Brain Cell Biol 36:173–189

    Article  CAS  PubMed  Google Scholar 

  • Tucker WC, Weber T, Chapman ER (2004) Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–438

    Article  CAS  PubMed  Google Scholar 

  • van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    Article  PubMed  Google Scholar 

  • Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S, Forgac M (2001) Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J Biol Chem 276:44064–44068

    Article  CAS  PubMed  Google Scholar 

  • Wilkens S, Vasilyeva E, Forgac M (1999) Structure of the vacuolar ATPase by electron microscopy. J Biol Chem 274:31804–31810

    Article  CAS  PubMed  Google Scholar 

  • Williamson WR, Hiesinger PR (2010) On the role of v-ATPase V0a1-dependent degradation in Alzheimer disease. Commun Integr Biol 3:604–607

    Article  PubMed Central  PubMed  Google Scholar 

  • Williamson WR, Wang D, Haberman AS, Hiesinger PR (2010) A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors. J Cell Biol 189:885–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wragg RT, Snead D, Dong Y, Ramlall TF, Menon I, Bai J, Eliezer D, Dittman JS (2013) Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77:323–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue M, Reim K, Chen X, Chao HT, Deng H, Rizo J, Brose N, Rosenmund C (2007) Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol 14:949–958

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Craig TK, Xu J, Chao H-T, Rizo J, Rosenmund C (2010) Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat Struct Mol Biol 17:568–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue L, Sheng J, Wu XS, Wu W, Luo F, Shin W, Chiang HC, Wu LG (2013) Most vesicles in a central nerve terminal participate in recycling. J Neurosci 33:8820–8826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Wang D, Volk E, Bellen HJ, Hiesinger PR, Quiocho FA (2008) V-ATPase V0 sector subunit a1 in neurons is a target of calmodulin. J Biol Chem 283(1):294–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Nguyen KT, Barrett EF, David G (2010) Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis. Neuron 68:1097–1108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Q, Petersen CC, Nicoll RA (2000) Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J Physiol 525:195–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerberg J (2001) How can proteolipids be central players in membrane fusion? Trends Cell Biol 11:233–235

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama El Far .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

El Far, O., Seagar, M. (2015). The Synaptic Vesicle V-ATPase: A Regulatory Link Between Loading and Fusion?. In: Mochida, S. (eds) Presynaptic Terminals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55166-9_7

Download citation

Publish with us

Policies and ethics