Skip to main content

Overview: Presynaptic Terminal Proteins Orchestrate Stepwise Synaptic Vesicle Phases

  • Chapter
  • First Online:
Presynaptic Terminals

Abstract

In mammalian central and peripheral nervous systems, most of presynaptic terminals operate as follows. Synaptic vesicles docked and primed at the active zone are ready for exocytosis and form a synaptic vesicle pool, the readily releasable pool. Neural electrical signal, an action potential, reached to the presynaptic nerve terminal induces the opening of voltage-gated Ca2+ channels and a rapid influx of Ca2+ at the active zone. The Ca2+ transient at the active zone triggers neurotransmitters release by synaptic vesicle exocytosis and controls the release efficacy for incoming neuronal signals. After exocytosis, the synaptic vesicle membrane is recycled from the nerve terminal membrane by endocytosis. Renewal synaptic vesicles are filled with transmitter and reserved in a pool, the reserve pool. Storage of synaptic vesicles in the pools and the mobilization from the presynaptic membrane and the reserve pool are controlled by Ca2+ signals after action potential firing. How synaptic vesicles in each phase are controlled? Studies over the last 25 years have revealed that individual proteins in the presynaptic terminal form complexes and orchestrate each of the synaptic vesicle phases and that Ca2+ sensor proteins promote synaptic vesicle in a phase to a next stage of the phase along the maturation pathway. To understand presynaptic terminals, in this book, specialists for presynaptic protein(s) illustrate in detail the involvement and the regulation in each synaptic vesicle phase. This overview chapter shortly follows, step by step, the synaptic vesicle phases in mammalian presynaptic terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel I, Fleissner A, Seifert R (1983) Synaptic vesicles from hog brain-their isolation and the coupling between synthesis and uptake of γ-aminobutyrate by glutamate decarboxylase. Neurochem Int 5:697–712

    CAS  PubMed  Google Scholar 

  • Antonin W, Riedel D, von Mollard GF (2000) The SNARE Vti1a-β is localized to small synaptic vesicles and participates in a novel SNARE complex. J Neurosci 20:5724–5732

    CAS  PubMed  Google Scholar 

  • Armbruster M, Messa M, Ferguson SM, De Camilli P, Ryan TA (2013) Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts. Elife 2:e00845

    PubMed Central  PubMed  Google Scholar 

  • Artalejo CR, Henley JR, McNiven MA, Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci U S A 92:8328–8332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atluri PP, Ryan TA (2006) The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J Neurosci 26:2313–2320

    CAS  PubMed  Google Scholar 

  • Baba T, Sakisaka T, Mochida S, Takai Y (2005) PKA-catalyzed phosphorylation of tomosyn and its implication in Ca2+-dependent exocytosis of neurotransmitter. J Cell Biol 170:1113–1125

    Google Scholar 

  • Bahler M, Greengard P (1987) Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326:704–707

    CAS  PubMed  Google Scholar 

  • Balaji J, Ryan TA (2007) Single-vesicle imaging reveals that synaptic vesicle exocytosis and endocytosis are coupled by a single stochastic mode. Proc Natl Acad Sci U S A 104:20576–20581

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balaji J, Armbruster M, Ryan TA (2008) Calcium control of endocytic capacity at a CNS synapse. J Neurosci 28:6742–6749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banerjee A, Kowalchyk JA, DasGupta BR, Martin TFJ (1996) SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J Biol Chem 271:20227–20230

    CAS  PubMed  Google Scholar 

  • Barker LA, Dowdall MJ, Whittaker VP (1972) Choline metabolism in the cerebral cortex of guinea pigs. Stable-bound acetylcholine. Biochem J 130:1063–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beck KA, Keen JH (1991) Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein AP-2. J Biol Chem 266:4442–4447

    CAS  PubMed  Google Scholar 

  • Beierlein M, Fioravante D, Regehr WG (2007) Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54:949–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bejanin S, Cervini R, Mallet J, Berrard S (1994) A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine. J Biol Chem 269:21944–21947

    CAS  PubMed  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    CAS  PubMed  Google Scholar 

  • Benfenati F, Valtorta F, Rubenstein JL, Gorelick FS, Greengard P, Czernik AJ (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 359:417–420

    CAS  PubMed  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    CAS  PubMed  Google Scholar 

  • Betz A, Thakur P, Junge HJ, Ashery U, Rhee JS, Scheuss V, Rosenmund C, Rettig J, Brose N (2001) Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 30:183–196

    CAS  PubMed  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623–626

    CAS  PubMed  Google Scholar 

  • Bezprozvanny I, Zhong P, Scheller RH, Tsien RW (2000) Molecular determinants of the functional interaction between syntaxin and N-type Ca2+ channel gating. Proc Natl Acad Sci U S A 97:13943–13948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    CAS  PubMed  Google Scholar 

  • Boucrot E, Pick A, Camdere G, Liska N, Evergren E, McMahon HT, Kozlov MM (2012) Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149:124–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boulant S, Kural C, Zeeh JC, Ubelmann F, Kirchhausen T (2011) Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat Cell Biol 13:1124–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bourne J, Morgan JR, Pieribone VA (2006) Actin polymerization regulates clathrin coat maturation during early stages of synaptic vesicle recycling at lamprey synapses. J Comp Neurol 497:600–609

    PubMed  Google Scholar 

  • Bracher A, Kadlec J, Betz H, Weissenhorn W (2002) X-ray structure of a neuronal complexin-SNARE complex from squid. J Biol Chem 277:26517–26523

    CAS  PubMed  Google Scholar 

  • Brager DH, Cai X, Thompson SM (2003) Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation. Nat Neurosci 6:551–552

    CAS  PubMed  Google Scholar 

  • Broadie K, Prokop A, Bellen HJ, O’Kane CJ, Schulze KL, Sweeney ST (1995) Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila. Neuron 15:663–673

    CAS  PubMed  Google Scholar 

  • Brose N, Petrenko AG, Sudhof TC, Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256:1021–1025

    CAS  PubMed  Google Scholar 

  • Brose N, Hofmann K, Hata Y, Sudhof TC (1995) Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem 270:25273–25280

    CAS  PubMed  Google Scholar 

  • Bucci G, Mochida S, Stephens GJ (2011) Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca2+ channel peptides. J Physiol 589:3085–3101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burger PM, Hell J, Mehl E, Krasel C, Lottspeich F, Jahn R (1991) GABA and glycine in synaptic vesicles: storage and transport characteristics. Neuron 7:287–293

    CAS  PubMed  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cai H, Reim K, Varoqueaux F, Tapechum S, Hill K, Sørensen JB, Brose N, Chow RH (2008) Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc Natl Acad Sci U S A 105:19538–19543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao P, Maximov A, Sudhof TC (2011) Activity-dependent IGF-1 exocytosis is controlled by the Ca2+-sensor synaptotagmin-10. Cell 145:300–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao P, Yang X, Südhof TC (2013) Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J Neurosci 33:1714–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1alpha is required for presynaptic long-term potentiation. Nature 415:327–330

    CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    CAS  PubMed  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    CAS  PubMed  Google Scholar 

  • Catterall WA, Leal K, Nanou E (2013) Calcium channels and short-term synaptic plasticity. J Biol Chem 288:10742–10749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ceccaldi PE, Grohovaz F, Benfenati F, Chieregatti E, Greengard P, Valtorta F (1995) Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol 128:905–912

    CAS  PubMed  Google Scholar 

  • Chandrasekar I, Huettner JE, Turney SG, Bridgman PC (2013) Myosin II regulates activity dependent compensatory endocytosis at central synapses. J Neurosci 33:16131–16145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman PF, Frenguelli BG, Smith A, Chen CM, Silva AJ (1995) The α-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14:591–597

    CAS  PubMed  Google Scholar 

  • Chen X, Tomchick DR, Kovrigin E, Araç D, Machius M, Südhof TC, Rizo J (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409

    CAS  PubMed  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193

    CAS  PubMed  Google Scholar 

  • Chi P, Greengard P, Ryan TA (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69–78

    CAS  PubMed  Google Scholar 

  • Christensen H, Fykse EM, Fonnum F (1990) Uptake of glycine into synaptic vesicles isolated from rat spinal cord. J Neurochem 54:1142–1147

    CAS  PubMed  Google Scholar 

  • Clayton EL, Evans GJO, Cousin MA (2008) Bulk synaptic vesicle endocytosis is rapidly triggered during strong stimulation. J Neurosci 28:6627–6632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen MW, Jones OT, Angelides KJ (1991) Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J Neurosci 11:1032–1039

    CAS  PubMed  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    CAS  PubMed  Google Scholar 

  • Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, Ducati A (1998) Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: with a note on its distribution in monkey cortex. J Comp Neurol 396:51–63

    CAS  PubMed  Google Scholar 

  • Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci U S A 91:644–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J Biol Chem 276:32756–32762

    CAS  PubMed  Google Scholar 

  • Cousin MA, Robinson PJ (2001) The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci 24:659–665

    CAS  PubMed  Google Scholar 

  • Cremona O, Di Paolo G, Wenk MR, Luthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188

    CAS  PubMed  Google Scholar 

  • Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 512(Pt 3):723–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davletov BA, Sudhof TC (1993) A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 268:26386–26390

    CAS  PubMed  Google Scholar 

  • De Camilli P, Benfenati F, Valtorta F, Greengard P (1990) The synapsins. Annu Rev Cell Biol 6:433–460

    PubMed  Google Scholar 

  • Deák F, Xu Y, Chang W-P, Dulubova I, Khvotchev M, Liu X, Südhof TC, Rizo J (2009) Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J Cell Biol 184:751–764

    PubMed Central  PubMed  Google Scholar 

  • Deitcher DL, Ueda A, Stewart BA, Burgess RW, Kidokoro Y, Schwarz TL (1998) Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila Gene neuronal-synaptobrevin. J Neurosci 18:2028–2039

    CAS  PubMed  Google Scholar 

  • DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489

    CAS  PubMed  Google Scholar 

  • Deng L, Kaeser PS, Xu W, Südhof TC (2011) RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron 69:317–331

    Google Scholar 

  • Di Giovanni J, Boudkkazi S, Mochida S, Bialowas A, Samari N, Leveque C, Youssouf F, Brechet A, Iborra C, Maulet Y, Moutot N, Debanne D, Seagar M, El Far O (2010) V-ATPase membrane sector associates with synaptobrevin to modulate neurotransmitter release. Neuron 67:268–279

    PubMed  Google Scholar 

  • Dickman DK, Lu Z, Meinertzhagen IA, Schwarz TL (2006) Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol 16:591–598

    CAS  PubMed  Google Scholar 

  • Dingledine R, Korn SJ (1985) Gamma-aminobutyric acid uptake and the termination of inhibitory synaptic potentials in the rat hippocampal slice. J Physiol 366:387–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dittman J, Ryan TA (2009) Molecular circuitry of endocytosis at nerve terminals. Annu Rev Cell Dev Biol 25:133–160

    CAS  PubMed  Google Scholar 

  • Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I, Südhof TC, Rizo J (2002) How Tlg2p/syntaxin 16 ‘snares’ Vps45. EMBO J 21:3620–3631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 104:2697–2702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edeling MA, Smith C, Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7:32–44

    CAS  PubMed  Google Scholar 

  • Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2012) Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13:7–21

    CAS  Google Scholar 

  • EL Far O, Seagar M (2011) A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem 10:1471–4159

    Google Scholar 

  • Erickson JD, Eiden LE, Hoffman BJ (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A 89:10993–10997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson JD, Varoqui H, Schafer MK, Modi W, Diebler MF, Weihe E, Rand J, Eiden LE, Bonner TI, Usdin TB (1994) Functional identification of a vesicular acetylcholine transporter and its expression from a “cholinergic” gene locus. J Biol Chem 269:21929–21932

    CAS  PubMed  Google Scholar 

  • Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A 93:5166–5171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Faas GC, Raghavachari S, Lisman JE, Mody I (2011) Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14:301–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117:109–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE (2008) Trafficking of vesicular neurotransmitter transporters. Traffic 9:1425–1436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM, Kaempf U, Kindler S, Gundelfinger ED, Garner CC (2000) Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 25:203–214

    CAS  PubMed  Google Scholar 

  • Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13:75–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferguson SM, Brasnjo G, Hayashi M, Wolfel M, Collesi C, Giovedi S, Raimondi A, Gong LW, Ariel P, Paradise S, O’Toole E, Flavell R, Cremona O, Miesenbock G, Ryan TA, De Camilli P (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316:570–574

    CAS  PubMed  Google Scholar 

  • Fischer von Mollard G, Stahl B, Walch-Solimena C, Takei K, Daniels L, Khoklatchev A, De Camilli P, Sudhof TC, Jahn R (1994) Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway. Eur J Cell Biol 65:319–326

    CAS  PubMed  Google Scholar 

  • Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT (2001) Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291:1051–1055

    CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    CAS  PubMed  Google Scholar 

  • Fujita Y, Shirataki H, Sakisaka T, Asakura T, Ohya T, Kotani H, Yokoyama S, Nishioka H, Matsuura Y, Mizoguchi A, Scheller RH, Takai Y (1998) Tomosyn: a syntaxin-1–binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20:905–915

    CAS  PubMed  Google Scholar 

  • Fykse EM, Fonnum F (1988) Uptake of γ-aminobutyric acid by a synaptic vesicle fraction isolated from rat brain. J Neurochem 50:1237–1242

    CAS  PubMed  Google Scholar 

  • Fykse EM, Fonnum F (1996) Amino acid neurotransmission: dynamics of vesicular uptake. Neurochem Res 21:1053–1060

    CAS  PubMed  Google Scholar 

  • Gandhi SP, Stevens CF (2003) Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423:607–613

    CAS  PubMed  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    CAS  PubMed  Google Scholar 

  • Gerber SH, Rah J-C, Min S-W, Liu X, de Wit H, Dulubova I, Meyer AC, Rizo J, Arancillo M, Hammer RE, Verhage M, Rosenmund C, Südhof TC (2008) Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321:1507–1510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillis KD, Mossner R, Neher E (1996) Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16:1209–1220

    CAS  PubMed  Google Scholar 

  • Gracheva EO, Hadwiger G, Nonet ML, Richmond JE (2008) Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett 444:137–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Granseth B, Odermatt B, Royle SJ, Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51:773–786

    CAS  PubMed  Google Scholar 

  • Groffen AJA, Jacobsen L, Schut D, Verhage M (2005) Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. J Neurochem 92:554–568

    CAS  PubMed  Google Scholar 

  • Guan R, Dai H, Harrison SC, Kirchhausen T (2010) Structure of the PTEN-like region of auxilin, a detector of clathrin-coated vesicle budding. Structure 18:1191–1198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guastella J, Brecha N, Weigmann C, Lester HA, Davidson N (1992) Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc Natl Acad Sci U S A 89:7189–7193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K (2000) Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 275:1247–1260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallermann S, Fejtova A, Schmidt H, Weyhersmüller A, Silver RA, Gundelfinger ED, Eilers J (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han Y, Kaeser PS, Sudhof TC, Schneggenburger R (2011) RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69:304–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE (1997) Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523–535

    CAS  PubMed  Google Scholar 

  • Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351

    CAS  PubMed  Google Scholar 

  • Haucke V, De Camilli P (1999) AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285:1268–1271

    CAS  PubMed  Google Scholar 

  • Hayashi T, Yamasaki S, Nauenburg S, Binz T, Niemann H (1995) Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J 14:2317–2325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi M, Raimondi A, O’Toole E, Paradise S, Collesi C, Cremona O, Ferguson SM, De Camilli P (2008) Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc Natl Acad Sci U S A 105:2175–2180

    CAS  PubMed Central  PubMed  Google Scholar 

  • He G, Gupta S, Yi M, Michaely P, Hobbs HH, Cohen JC (2002) ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem 277:44044–44049

    CAS  PubMed  Google Scholar 

  • Heidelberger R, Zhou ZY, Matthews G (2002) Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J Neurophysiol 88:2509–2517

    PubMed  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    CAS  PubMed  Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34:411–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ (2005) The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192

    CAS  PubMed  Google Scholar 

  • Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat Neurosci 15:988–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtje M, von Jagow B, Pahner I, Lautenschlager M, Hortnagl H, Nurnberg B, Jahn R, Ahnert-Hilger G (2000) The neuronal monoamine transporter VMAT2 is regulated by the trimeric GTPase Go(2). J Neurosci 20:2131–2141

    CAS  PubMed  Google Scholar 

  • Hosaka M, Hammer RE, Sudhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24:377–387

    CAS  PubMed  Google Scholar 

  • Hosoi N, Holt M, Sakaba T (2009) Calcium dependence of exo- and endocytotic coupling at a glutamatergic synapse. Neuron 63:216–229

    CAS  PubMed  Google Scholar 

  • Hull C, von Gersdorff H (2004) Fast endocytosis is inhibited by GABA-mediated chloride influx at a presynaptic terminal. Neuron 44:469–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Humeau Y, Doussau F, Vitiello F, Greengard P, Benfenati F, Poulain B (2001) Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J Neurosci 21:4195–4206

    CAS  PubMed  Google Scholar 

  • Hunt JM, Bommert K, Charlton MP, Kistner A, Habermann E, Augustine GJ, Betzt H (1994) A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12:1269–1279

    CAS  PubMed  Google Scholar 

  • Inoue E, Mochida S, Takagi H, Higa S, Deguchi-Tawarada M, Takao-Rikitsu E, Inoue M, Yao I, Takeuchi K, Kitajima I, Setou M, Ohtsuka T, Takai Y (2006) SAD: a presynaptic kinase associated with synaptic vesicles and the active zone cytomatrix that regulates neurotransmitter release. Neuron 50:261–275

    CAS  PubMed  Google Scholar 

  • Ishizuka T, Saisu H, Odani S, Abe T (1995) Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem Biophys Res Commun 213:1107–1114

    CAS  PubMed  Google Scholar 

  • Itoh T, De Camilli P (2006) BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761:897–912

    CAS  PubMed  Google Scholar 

  • Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Honing S, Evans PR, Owen DJ (2010) A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–1229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jarvis SE, Zamponi GW (2001) Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 21:2939–2948

    CAS  PubMed  Google Scholar 

  • Jiang X, Lautermilch NJ, Watari H, Westenbroek RE, Scheuer T, Catterall WA (2008) Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proc Natl Acad Sci U S A 105:341–346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jockusch WJ, Praefcke GJ, McMahon HT, Lagnado L (2005) Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46:869–878

    CAS  PubMed  Google Scholar 

  • Jones RT, Walker JH, Stadler H, Whittaker VP (1982) Immunohistochemical localization of a synaptic-vesicle antigen in a cholinergic neuron under conditions of stimulation and rest. Cell Tissue Res 223:117–126

    CAS  PubMed  Google Scholar 

  • Jorquera RA, Huntwork-Rodriguez S, Akbergenova Y, Cho RW, Littleton JT (2012) Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci 32:18234–18245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93:3679–3683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung N, Haucke V (2007) Clathrin-mediated endocytosis at synapses. Traffic 8:1129–1136

    CAS  PubMed  Google Scholar 

  • Junge HJ, Rhee J-S, Jahn O, Varoqueaux F, Spiess J, Waxham MN, Rosenmund C, Brose N (2004) Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118:389–401

    CAS  PubMed  Google Scholar 

  • Kaeser PS, Deng L, Chavez AE, Liu X, Castillo PE, Sudhof TC (2009) ELKS2α/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. Neuron 64:227–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Südhof TC (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295

    Google Scholar 

  • Kaeser-Woo YJ, Yang X, Sudhof TC (2012) C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis. J Neurosci 32:2877–2885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–250

    CAS  PubMed  Google Scholar 

  • Kawasaki F, Hazen M, Ordway RW (2000) Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nat Neurosci 3:859–860

    CAS  PubMed  Google Scholar 

  • Kennedy MB, Bennett MK, Bulleit RF, Erondu NE, Jennings VR, Miller SG, Molloy SS, Patton BL, Schenker LJ (1990) Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol 55:101–110

    CAS  PubMed  Google Scholar 

  • Kessels MM, Qualmann B (2002) Syndapins integrate N-WASP in receptor-mediated endocytosis. EMBO J 21:6083–6094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khvotchev M, Dulubova I, Sun J, Dai H, Rizo J, Sudhof TC (2007) Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J Neurosci 27:12147–12155

    CAS  PubMed  Google Scholar 

  • Kim DK, Catterall WA (1997) Ca2+-dependent and -independent interactions of the isoforms of the α1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc Natl Acad Sci U S A 94:14782–14786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim SH, Ryan TA (2009) Synaptic vesicle recycling at CNS synapses without AP-2. J Neurosci 29:3865–3874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirchhausen T (2009) Imaging endocytic clathrin structures in living cells. Trends Cell Biol 19:596–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kish PE, Fischer-Bovenkerk C, Ueda T (1989) Active transport of γ-aminobutyric acid and glycine into synaptic vesicles. Proc Natl Acad Sci U S A 86:3877–3881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054

    CAS  PubMed  Google Scholar 

  • Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M, Kanagawa M, Itakura M, Takahashi M, Campbell KP, Mori Y (2007) RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10:691–701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiyonaka S, Nakajima H, Takada Y, Hida Y, Yoshioka T, Hagiwara A, Kitajima I, Mori Y, Ohtsuka T (2012) Physical and functional interaction of the active zone protein CAST/ERC2 and the β-subunit of the voltage-dependent Ca2+ channel. J Biol Chem 152:149–159

    CAS  Google Scholar 

  • Klingauf J (2007) Synaptic vesicle dynamics sans dynamin. Neuron 54:857–858

    CAS  PubMed  Google Scholar 

  • Klingauf J, Kavalali ET, Tsien RW (1998) Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394:581–585

    CAS  PubMed  Google Scholar 

  • Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schuler S, Muller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fassler R, Hubner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B (2011) Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J 30:4955–4969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9:3844–3860

    CAS  PubMed  Google Scholar 

  • Koo SJ, Markovic S, Puchkov D, Mahrenholz CC, Beceren-Braun F, Maritzen T, Dernedde J, Volkmer R, Oschkinat H, Haucke V (2011) SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc Natl Acad Sci U S A 108:13540–13545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM, Nonet ML (2001) A post-docking role for active zone protein Rim. Nat Neurosci 4:997–1005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52:485–496

    CAS  PubMed  Google Scholar 

  • Kuromi H, Kidokoro Y (2002) Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse. Neuron 35:333–343

    CAS  PubMed  Google Scholar 

  • Landis DM, Hall AK, Weinstein LA, Reese TS (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1:201–209

    CAS  PubMed  Google Scholar 

  • Lautermilch NJ, Few AP, Scheuer T, Catterall WA (2005) Modulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J Neurosci 25:7062–7070

    CAS  PubMed  Google Scholar 

  • Leal K, Mochida S, Scheuer T, Catterall WA (2012) Fine-tuning synaptic plasticity by modulation of CaV2.1 channels with Ca2+ sensor proteins. Proc Natl Acad Sci U S A 109:17069–17074

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159

    CAS  PubMed  Google Scholar 

  • Lee AT, Balasubramanian K, Schroit AJ (2000) β2-Glycoprotein I-dependent alterations in membrane properties. Biochim Biophys Acta 1509:475–484

    CAS  PubMed  Google Scholar 

  • Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, Catterall WA (2002) Differential modulation of CaV2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neurosci 5:210–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JS, Ho WK, Lee SH (2012) Actin-dependent rapid recruitment of reluctant synaptic vesicles into a fast-releasing vesicle pool. Proc Natl Acad Sci U S A 109:E765–774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leveque C, el Far O, Martin-Moutot N, Sato K, Kato R, Takahashi M, Seagar MJ (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J Biol Chem 269:6306–6312

    CAS  PubMed  Google Scholar 

  • Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P et al (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A 92:9235–9239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin FT, Krueger KM, Kendall HE, Daaka Y, Fredericks ZL, Pitcher JA, Lefkowitz RJ (1997) Clathrin-mediated endocytosis of the β-adrenergic receptor is regulated by phosphorylation/dephosphorylation of β-arrestin1. J Biol Chem 272:31051–31057

    CAS  PubMed  Google Scholar 

  • Littleton JT, Stern M, Schulze K, Perin M, Bellen HJ (1993) Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell 74:1125–1134

    CAS  PubMed  Google Scholar 

  • Liu QR, Nelson H, Mandiyan S, Lopez-Corcuera B, Nelson N (1992a) Cloning and expression of a glycine transporter from mouse brain. FEBS Lett 305:110–114

    CAS  PubMed  Google Scholar 

  • Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D, Brecha N, Edwards RH (1992b) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70:539–551

    CAS  PubMed  Google Scholar 

  • Llinás R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A 82:3035–3039

    PubMed Central  PubMed  Google Scholar 

  • Llinás R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J Physiol 436:257–282

    PubMed Central  PubMed  Google Scholar 

  • Lonárt G, Schoch S, Kaeser PS, Larkin CJ, Sudhof TC, Linden DJ (2003) Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60

    PubMed  Google Scholar 

  • Lu FM, Hawkins RD (2006) Presynaptic and postsynaptic Ca2+ and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci U S A 103:4264–4269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu B, Greengard P, Poo MM (1992) Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron 8:521–529

    CAS  PubMed  Google Scholar 

  • Lu W, Ma H, Sheng ZH, Mochida S (2009) Dynamin and activity regulate synaptic vesicle recycling in sympathetic neurons. J Biol Chem 284:1930–1937

    CAS  PubMed  Google Scholar 

  • Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550

    CAS  PubMed  Google Scholar 

  • Ma H, Mochida S (2007) A cholinergic model synapse to elucidate protein function at presynaptic terminals. Neurosci Res 57:491–498

    CAS  PubMed  Google Scholar 

  • Ma H, Cai Q, Lu W, Sheng ZH, Mochida S (2009) KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J Neurosci 29:13019–13029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magupalli VG, Mochida S, Yan J, Jiang X, Westenbroek RE, Nairn AC, Scheuer T, Catterall WA (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 calcium channels. J Biol Chem 288:4637–4648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    CAS  PubMed  Google Scholar 

  • Maximov A, Tang J, Yang X, Pang ZP, Südhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maycox PR, Hell JW, Jahn R (1990) Amino acid neurotransmission: spotlight on synaptic vesicles. Trends Neurosci 13:83–87

    CAS  PubMed  Google Scholar 

  • Mayor F Jr, Marvizon JG, Aragon MC, Gimenez C, Valdivieso F (1981) Glycine transport into plasma-membrane vesicles derived from rat brain synaptosomes. Biochem J 198:535–541

    CAS  PubMed Central  PubMed  Google Scholar 

  • McEwen JM, Madison JM, Dybbs M, Kaplan JM (2006) Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13. Neuron 51:303–315

    CAS  PubMed  Google Scholar 

  • McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    CAS  PubMed  Google Scholar 

  • McMahon HT, Missler M, Li C, Südhof TC (1995) Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83:111–119

    CAS  PubMed  Google Scholar 

  • McPherson PS (2010) Proteomic analysis of clathrin-coated vesicles. Proteomics 10:4025–4039

    CAS  PubMed  Google Scholar 

  • Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    CAS  PubMed  Google Scholar 

  • Miller TM, Heuser JE (1984) Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 98:685–698

    CAS  PubMed  Google Scholar 

  • Miller SE, Sahlender DA, Graham SC, Honing S, Robinson MS, Peden AA, Owen DJ (2011) The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147:1118–1131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O’Toole E, Ferguson S, Cremona O, De Camilli P (2011) Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72:587–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H, Watanabe M (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17:2563–2572

    PubMed  Google Scholar 

  • Mochida S, Saisu H, Kobayashi H, Abe T (1995) Impairment of syntaxin by botulinum neurotoxin C1 or antibodies inhibits acetylcholine release but not Ca2+ channel activity. Neuroscience 65:905–915

    CAS  PubMed  Google Scholar 

  • Mochida S (2011a) Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res 70:16–23

    PubMed  Google Scholar 

  • Mochida S (2011b) Ca/Calmodulin and presynaptic short-term plasticity. ISRN Neurol 2011:919043

    PubMed Central  PubMed  Google Scholar 

  • Mochida S, Kobayashi H, Matsuda Y, Yuda Y, Muramoto K, Nonomura Y (1994a) Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13:1131–1142

    CAS  PubMed  Google Scholar 

  • Mochida S, Nonomura Y, Kobayashi H (1994b) Analysis of the mechanism for acetylcholine release at the synapse formed between rat sympathetic neurons in culture. Microsc Res Tech 29:94–102

    CAS  PubMed  Google Scholar 

  • Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17:781–788

    CAS  PubMed  Google Scholar 

  • Mochida S, Westenbroek RE, Yokoyama CT, Itoh K, Catterall WA (2003) Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc Natl Acad Sci U S A 100:2813–2818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic CaV2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57:210–216

    CAS  PubMed  Google Scholar 

  • Mooren OL, Kotova TI, Moore AJ, Schafer DA (2009) Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem 284:23995–24005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morel N, Dedieu J-C, Philippe J-M (2003) Specific sorting of the a1 isoform of the V-H+ ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J Cell Sci 116:4751–4762

    CAS  PubMed  Google Scholar 

  • Morgan JR, Prasad K, Hao W, Augustine GJ, Lafer EM (2000) A conserved clathrin assembly motif essential for synaptic vesicle endocytosis. J Neurosci 20:8667–8676

    CAS  PubMed  Google Scholar 

  • Mori M, Tanufuji S, Mochida S (2014) Kinetic organization of Ca2+ signals that regulate synaptic release efficacy in sympathetic neurons. Mol Pharmacol 86:297–305

    CAS  PubMed  Google Scholar 

  • Morris SM, Cooper JA (2001) Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2:111–123

    CAS  PubMed  Google Scholar 

  • Moulder KL, Mennerick S (2005) Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J Neurosci 25:3842–3850

    CAS  PubMed  Google Scholar 

  • Murthy VN, Stevens CF (1998) Synaptic vesicles retain their identity through the endocytic cycle. Nature 392:497–501

    CAS  PubMed  Google Scholar 

  • Murthy VN, Stevens CF (1999) Reversal of synaptic vesicle docking at central synapses. Nat Neurosci 2:503–507

    CAS  PubMed  Google Scholar 

  • Nakajima Y, Mochida S, Okawa K, Nakanishi S (2009) Ca2+-dependent release of Munc18-1 from presynaptic mGluRs in short-term facilitation. Proc Natl Acad Sci U S A 106:18385–18389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakata T, Kitamura Y, Shimizu K, Tanaka S, Fujimori M, Yokoyama S, Ito K, Emi M (1999) Fusion of a novel gene, ELKS, to RET due to translocation t(10;12) (q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer 25:97–103

    CAS  PubMed  Google Scholar 

  • Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    CAS  PubMed  Google Scholar 

  • Neher E (2010) Complexin: does it deserve its name? Neuron 68:803–806

    CAS  PubMed  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    CAS  PubMed  Google Scholar 

  • Neves G, Gomis A, Lagnado L (2001) Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc Natl Acad Sci U S A 98:15282–15287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholson-Tomishima K, Ryan TA (2004) Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. Proc Natl Acad Sci U S A 101:16648–16652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielander HB, Onofri F, Schaeffer E, Menegon A, Fesce R, Valtorta F, Greengard P, Benfenati F (1997) Phosphorylation-dependent effects of synapsin IIa on actin polymerization and network formation. Eur J Neurosci 9:2712–2722

    CAS  PubMed  Google Scholar 

  • Ohtsuka T, Takao-Rikitsu E, Inoue E, Inoue M, Takeuchi M, Matsubara K, Deguchi-Tawarada M, Satoh K, Morimoto K, Nakanishi H, Takai Y (2002) CAST: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and Munc13-1. J Cell Biol 158:577–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okamoto PM, Herskovits JS, Vallee RB (1997) Role of the basic, proline-rich region of dynamin in Src homology 3 domain binding and endocytosis. J Biol Chem 272:11629–11635

    CAS  PubMed  Google Scholar 

  • Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20:153–191

    CAS  PubMed  Google Scholar 

  • Pabst S, Hazzard JW, Antonin W, Südhof TC, Jahn R, Rizo J, Fasshauer D (2000) Selective interaction of complexin with the neuronal SNARE complex: determination of the binding regions. J Biol Chem 275:19808–19818

    CAS  PubMed  Google Scholar 

  • Park H, Li Y, Tsien RW (2012) Influence of synaptic vesicle position on release probability and exocytotic fusion mode. Science 335:1362–1366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883

    CAS  PubMed  Google Scholar 

  • Perin MS, Fried VA, Mignery GA, Jahn R, Sudhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260–263

    CAS  PubMed  Google Scholar 

  • Perin MS, Johnston PA, Ozcelik T, Jahn R, Francke U, Sudhof TC (1991) Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J Biol Chem 266:615–622

    CAS  PubMed  Google Scholar 

  • Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, Edwards RH (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15:6179–6188

    CAS  PubMed  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497

    CAS  PubMed  Google Scholar 

  • Pobbati AV, Razeto A, Böddener M, Becker S, Fasshauer D (2004) Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem 279:47192–47200

    CAS  PubMed  Google Scholar 

  • Ponce J, Poyatos I, Aragon C, Gimenez C, Zafra F (1998) Characterization of the 5′ region of the rat brain glycine transporter GLYT2 gene: identification of a novel isoform. Neurosci Lett 242:25–28

    CAS  PubMed  Google Scholar 

  • Poskanzer KE, Marek KW, Sweeney ST, Davis GW (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426:559–563

    CAS  PubMed  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    CAS  PubMed  Google Scholar 

  • Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28:221–231

    CAS  PubMed  Google Scholar 

  • Raimondi A, Ferguson SM, Lou X, Armbruster M, Paradise S, Giovedi S, Messa M, Kono N, Takasaki J, Cappello V, O’Toole E, Ryan TA, De Camilli P (2011) Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70:1100–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P (1991) GABA and pancreatic β-cells: colocalization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J 10:1275–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reim K, Mansour M, Varoqueaux F, McMahon HT, Südhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104:71–81

    CAS  PubMed  Google Scholar 

  • Reimer RJ, Fon EA, Edwards RH (1998) Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr Opin Neurobiol 8:405–412

    CAS  PubMed  Google Scholar 

  • Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP, Catterall WA (1996) Isoform-specific interaction of the α1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci U S A 93:7363–7368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493

    CAS  PubMed  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372:55–63

    CAS  PubMed  Google Scholar 

  • Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol 553:345–355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan TA, Li L, Chin LS, Greengard P, Smith SJ (1996a) Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol 134:1219–1227

    CAS  PubMed  Google Scholar 

  • Ryan TA, Smith SJ, Reuter H (1996b) The timing of synaptic vesicle endocytosis. Proc Natl Acad Sci U S A 93:5567–5571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaba T (2006) Roles of the fast-releasing and the slowly releasing vesicles in synaptic transmission at the calyx of held. J Neurosci 26:5863–5871

    CAS  PubMed  Google Scholar 

  • Sakaba T, Neher E (2001) Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32:1119–1131

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Ryan TA (2001) Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nat Neurosci 4:129–136

    CAS  PubMed  Google Scholar 

  • Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135

    CAS  PubMed  Google Scholar 

  • Schafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, Cooper JA (2002) Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 2:1852–1857

    Google Scholar 

  • Schmid EM, McMahon HT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448:883–888

    CAS  PubMed  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka RC, Sudhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326

    CAS  PubMed  Google Scholar 

  • Schulman H, Greengard P (1978) Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator”. Proc Natl Acad Sci U S A 75:5432–5436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze KL, Broadie K, Perin MS, Bellen HJ (1995) Genetic and electrophysiological studies of drosophila syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission. Cell 80:311–320

    CAS  PubMed  Google Scholar 

  • Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, van der Bliek AM, Jorgensen EM (2003) Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40:749–762

    CAS  PubMed  Google Scholar 

  • Serra-Pages C, Kedersha NL, Fazikas L, Medley Q, Debant A, Streuli M (1995) The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J 14:2827–2838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    CAS  PubMed  Google Scholar 

  • Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    CAS  PubMed  Google Scholar 

  • Sheng ZH, Yokoyama CT, Catterall WA (1997) Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci U S A 94:5405–5410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    CAS  PubMed  Google Scholar 

  • Shupliakov O, Low P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276:259–263

    CAS  PubMed  Google Scholar 

  • Shupliakov O, Bloom O, Gustafsson JS, Kjaerulff O, Low P, Tomilin N, Pieribone VA, Greengard P, Brodin L (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci U S A 99:14476–14481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silver RB, Sugimori M, Lang EJ, Llinas R (1994) Time-resolved imaging of Ca2+-dependent aequorin luminescence of microdomains and QEDs in synaptic preterminals. Biol Bull 187:293–299

    CAS  PubMed  Google Scholar 

  • Slepnev VI, De Camilli P (2000) Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci 1:161–172

    CAS  PubMed  Google Scholar 

  • Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8:927–935

    CAS  PubMed  Google Scholar 

  • Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993a) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    CAS  PubMed  Google Scholar 

  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993b) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    CAS  PubMed  Google Scholar 

  • Stephens GJ, Mochida S (2005) G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 563:765–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens CF, Williams JH (2007) Discharge of the readily releasable pool with action potentials at hippocampal synapses. J Neurophysiol 98:3221–3229

    PubMed Central  PubMed  Google Scholar 

  • Su SC, Seo J, Pan Jen Q, Samuels Benjamin A, Rudenko A, Ericsson M, Neve Rachael L, Yue David T, Tsai L-H (2012) Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 75:675–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375:645–653

    CAS  PubMed  Google Scholar 

  • Sudhof TC (2000) The synaptic vesicle cycle revisited. Neuron 28:317–320

    CAS  PubMed  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  • Sudhof TC (2012) The presynaptic active zone. Neuron 75:11–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun JY, Wu LG (2001) Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30:171–182

    CAS  PubMed  Google Scholar 

  • Sun JY, Wu XS, Wu LG (2002) Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417:555–559

    CAS  PubMed  Google Scholar 

  • Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Sudhof TC (2007) A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450:676–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR (1995) Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80:929–938

    CAS  PubMed  Google Scholar 

  • Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351

    CAS  PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    CAS  PubMed  Google Scholar 

  • Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T, Takai Y (2004) Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 164:301–311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-γ-S in nerve terminals. Nature 374:186–190

    CAS  PubMed  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    CAS  PubMed  Google Scholar 

  • Tang J, Maximov A, Shin O-H, Dai H, Rizo J, Südhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–1187

    CAS  PubMed  Google Scholar 

  • Tanifuji S, Funakoshi-Tago M, Ueda F, Kasahara T, Mochida S (2013) Dynamin isoforms decode action potential firing for synaptic vesicle recycling. J Biol Chem 288:19050–19059

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor MJ, Lampe M, Merrifield CJ (2012) A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol 10:e1001302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas L, Betz H (1990) Synaptophysin binds to physophilin, a putative synaptic plasma membrane protein. J Cell Biol 111:2041–2052

    CAS  PubMed  Google Scholar 

  • tom Dieck S, Sanmarti-Vila L, Langnaese K, Richter K, Kindler S, Soyke A, Wex H, Smalla KH, Kampf U, Franzer JT, Stumm M, Garner CC, Gundelfinger ED (1998) Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    CAS  PubMed  Google Scholar 

  • tom Dieck S, Specht D, Strenzke N, Hida Y, Krishnamoorthy V, Schmidt K-F, Inoue E, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Hagiwara A, Brandstätter JH, Löwel S, Gollisch T, Ohtsuka T, Moser T (2012) Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J Neurosci 32:12192–12203

    PubMed  Google Scholar 

  • Traub LM (2003) Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 85:4538–4542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valtorta F, Iezzi N, Benfenati F, Lu B, Poo MM, Greengard P (1995) Accelerated structural maturation induced by synapsin I at developing neuromuscular synapses of Xenopus laevis. Eur J Neurosci 7:261–270

    CAS  PubMed  Google Scholar 

  • von Gersdorff H, Matthews G (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367:735–739

    Google Scholar 

  • Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575

    CAS  PubMed  Google Scholar 

  • Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844

    CAS  PubMed  Google Scholar 

  • Walther K, Krauss M, Diril MK, Lemke S, Ricotta D, Honing S, Kaiser S, Haucke V (2001) Human stoned B interacts with AP-2 and synaptotagmin and facilitates clathrin-coated vesicle uncoating. EMBO Rep 2:634–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walther K, Diril MK, Jung N, Haucke V (2004) Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. Proc Natl Acad Sci U S A 101:964–969

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC (1997) Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598

    CAS  PubMed  Google Scholar 

  • Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW (1999) Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 147:151–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Liu X, Biederer T, Sudhof TC (2002) A family of RIM-binding proteins regulated by alternative splicing: implications for the genesis of synaptic active zones. Proc Natl Acad Sci U S A 99:14464–14469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kielczynski B, Rosenmund C, Jorgensen EM (2013) Ultrafast endocytosis at mouse hippocampal synapses. Nature 504:242–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weihe E, Schafer MK, Erickson JD, Eiden LE (1994) Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 5:149–164

    CAS  PubMed  Google Scholar 

  • Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 9:1099–1115

    CAS  PubMed  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    CAS  PubMed  Google Scholar 

  • Weyhersmüller A, Hallermann S, Wagner N, Eilers J (2011) Rapid active zone remodeling during synaptic plasticity. J Neurosci 31:6041–6052

    PubMed  Google Scholar 

  • Wiser O, Bennett MK, Atlas D (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J 15:4100–4110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiser O, Tobi D, Trus M, Atlas D (1997) Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett 404:203–207

    CAS  PubMed  Google Scholar 

  • Wojcik SM, Brose N (2007) Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55:11–24

    CAS  PubMed  Google Scholar 

  • Wu LG (2004) Kinetic regulation of vesicle endocytosis at synapses. Trends Neurosci 27:548–554

    CAS  PubMed  Google Scholar 

  • Wu LG, Betz WJ (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17:769–779

    CAS  PubMed  Google Scholar 

  • Wu W, Wu L-G (2007) Rapid bulk endocytosis and its kinetics of fission pore closure at a central synapse. Proc Natl Acad Sci U S A 104:10234–10239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Xu J, Wu XS, Wu LG (2005) Activity-dependent acceleration of endocytosis at a central synapse. J Neurosci 25:11676–11683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu XS, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L, Wu LG (2009) Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12:1003–1010

    CAS  PubMed  Google Scholar 

  • Xing Y, Bocking T, Wolf M, Grigorieff N, Kirchhausen T, Harrison SC (2010) Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. EMBO J 29:655–665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Mashimo T, Sudhof TC (2007) Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567–581

    CAS  PubMed  Google Scholar 

  • Xu J, McNeil B, Wu W, Nees D, Bai L, Wu LG (2008) GTP-independent rapid and slow endocytosis at a central synapse. Nat Neurosci 11:45–53

    CAS  PubMed  Google Scholar 

  • Xu J, Pang ZP, Shin OH, Sudhof TC (2009) Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat Neurosci 12:759–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xue M, Reim K, Chen X, Chao HT, Deng H, Rizo J, Brose N, Rosenmund C (2007) Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol 14:949–958

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Mochida S, Kurooka T, Sakisaka T (2009) Reciprocal intramolecular interactions of tomosyn control its inhibitory activity on SNARE complex formation. J Biol Chem 284:12480–12490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita T, Eguchi K, Saitoh N, von Gersdorff H, Takahashi T (2010) Developmental shift to a mechanism of synaptic vesicle endocytosis requiring nanodomain Ca2+. Nat Neurosci 13:838–844

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY, Wensel TG, Bellen HJ (2009) A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138:947–960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yim YI, Sun T, Wu LG, Raimondi A, De Camilli P, Eisenberg E, Greene LE (2010) Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107:4412–4417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yizhar O, Matti U, Melamed R, Hagalili Y, Bruns D, Rettig J, Ashery U (2004) Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner. Proc Natl Acad Sci U S A 101:2578–2583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama CT, Myers SJ, Fu J, Mockus SM, Scheuer T, Catterall WA (2005) Mechanism of SNARE protein binding and regulation of CaV2 channels by phosphorylation of the synaptic protein interaction site. Mol Cell Neurosci 28:1–17

    CAS  PubMed  Google Scholar 

  • Yoshida A, Oho C, Omori A, Kuwahara R, Ito T, Takahashi M (1992) HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J Biol Chem 267:24925–24928

    CAS  PubMed  Google Scholar 

  • Yoshihara M, Littleton JT (2002) Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36:897–908

    CAS  PubMed  Google Scholar 

  • Yue HY, Xu J (2014) Myosin light chain kinase accelerates vesicle endocytosis at the calyx of Held synapse. J Neurosci 34:295–304

    CAS  PubMed  Google Scholar 

  • Zhang JZ, Davletov BA, Sudhof TC, Anderson RG (1994) Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78:751–760

    CAS  PubMed  Google Scholar 

  • Zhang C, Xiong W, Zheng H, Wang L, Lu B, Zhou Z (2004) Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron 42:225–236

    CAS  PubMed  Google Scholar 

  • Zhang Q, Li Y, Tsien RW (2009) The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323:1448–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong H, Yokoyama CT, Scheuer T, Catterall WA (1999) Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 2:939–941

    CAS  PubMed  Google Scholar 

  • Zhou Q, Petersen CC, Nicoll RA (2000) Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J Physiol 525(Pt 1):195–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, Bacaj T, Südhof TC (2012) Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J 32:159–171

    PubMed Central  PubMed  Google Scholar 

  • Zhu Y, Xu J, Heinemann SF (2009) Two pathways of synaptic vesicle retrieval revealed by single-vesicle imaging. Neuron 61:397–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136:1110–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumiko Mochida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Mochida, S. (2015). Overview: Presynaptic Terminal Proteins Orchestrate Stepwise Synaptic Vesicle Phases. In: Mochida, S. (eds) Presynaptic Terminals. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55166-9_1

Download citation

Publish with us

Policies and ethics