Skip to main content

Rapid Assembly of Cellular Aggregation Using Micro-Nano Technologies

  • Chapter
  • First Online:
Engineered Cell Manipulation for Biomedical Application

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 1057 Accesses

Abstract

A rapid construction process is necessary for building up numerous cellular aggregations into three-dimensional (3D) tissues that retain the tissue geometries and initial conditions of the cells. In this chapter, we introduce new 3D assembly techniques to fabricate different hollow tissue structures. In cellular self-assembly technique by using the micro-fabricated platform, we discuss a microlumen that facilitates the supply of oxygen and growth factors and the expulsion of waste products and then fabricate a toroid-like tissue by utilizing this assembly technique. In rapid assembly technique by using transfer printing, we discuss the relationship between the 3D transcriptional body of a gel matrix and the developed shape of transferred tissue and then fabricate a hollow tubular tissue by utilizing this assembly technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Masuda T, Takei N et al (2012) A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomed Microdevices 14:1085–1093

    Article  CAS  PubMed  Google Scholar 

  3. Chen CS, Mrksich M et al (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  CAS  PubMed  Google Scholar 

  4. McBeath R, Pirone DM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  PubMed  Google Scholar 

  5. Fukuda J, Khademhosseini A et al (2006) Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27:5259–5267

    Article  CAS  PubMed  Google Scholar 

  6. Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 15:205–219

    Article  CAS  PubMed  Google Scholar 

  7. Masuda T, Takahashi I et al (2008) Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. J Biotechnol 133:231–238

    Article  CAS  PubMed  Google Scholar 

  8. Nelson CM, Vanduijn MM et al (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anada T, Masuda T et al (2010) Three-dimensional cell culture device utilizing thin membrane deformation by decompression. Sens Actuators B 147:376–379

    Article  CAS  Google Scholar 

  10. Kloss D, Fischer M et al (2008) Drug testing on 3D in vitro tissues trapped on a microcavity chip. Lab Chip 8:879–884

    Article  CAS  PubMed  Google Scholar 

  11. Albrecht DR, Underhill GH et al (2006) Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods 3:369–375

    Article  CAS  PubMed  Google Scholar 

  12. Barrila J, Radtke AL et al (2010) Organotypic 3D cell culture models: using the rotating wall vessel to study host–pathogen interactions. Nat Rev Micro 8:791–801

    Article  CAS  Google Scholar 

  13. Nichol JW, Koshy ST et al (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bartosh TJ, Ylostalo JH et al (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A 107(31):13724–13729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wartenberg M, Donmez F et al (2001) Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15:995–1005

    Article  CAS  PubMed  Google Scholar 

  16. Skardal A, Sarker SF et al (2010) The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31:8426–8435

    Article  CAS  PubMed  Google Scholar 

  17. Miyazawa M, Torii T et al (2007) Hepatocyte dynamics in a three-dimensional rotating bioreactor. J Gastroenterol Hepatol 22:1959–1964

    Article  CAS  PubMed  Google Scholar 

  18. Tung YC, Hsiao AY et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478

    Article  CAS  PubMed  Google Scholar 

  19. Metzen E, Wolff M, Fandrey J, Jelkmann W (1995) Pericellular PO2 and O2 consumption in monolayer cell cultures. Respir Physiol 100:101–106

    Article  CAS  PubMed  Google Scholar 

  20. Mamchaoui K, Saumon G (2000) A method for measuring the oxygen consumption of intact cell monolayers. Am J Physiol Lung Cell Mol Physiol 278:L858–L863

    CAS  PubMed  Google Scholar 

  21. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  PubMed  Google Scholar 

  22. Livoti CM, Morgan JR (2010) Self-assembly and tissue fusion of toroid-shaped minimal building units. Tissue Eng Part A 16:2051–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Itoga K, Kobayashi J et al (2008) Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication. Anal Chem 80:1323–1327

    Article  CAS  PubMed  Google Scholar 

  24. McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci U S A 103:11461–11466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yanagawa F, Kaji H et al (2011) Directed assembly of cell-laden microgels for building porous three-dimensional tissue constructs. J Biomed Mater Res A. doi:10.1002/jbm.a.33034

    PubMed  PubMed Central  Google Scholar 

  26. Aubin H, Nichol JW et al (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31:6941–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Papadaki M, Bursac N et al (2001) Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart C 280:H168–H178

    CAS  Google Scholar 

  28. Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71

    Article  CAS  PubMed  Google Scholar 

  29. Masuda T, Kawai T et al (2010) Quality of regenerated bone enhanced by implantation of octacalcium phosphate-collagen composite. Tissue Eng Part C Methods 16:471–478

    Article  CAS  PubMed  Google Scholar 

  30. Mironov V, Visconti RP et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nishiguchi A, Yoshida H, Matsusaki M, Akashi M (2011) Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 23:3506–3510

    Article  CAS  PubMed  Google Scholar 

  32. Matsusaki M, Ajiro H et al (2012) Layer-by-layer assembly through weak interactions and their biomedical applications. Adv Mater 24:454–474

    Article  CAS  PubMed  Google Scholar 

  33. Ventura CE (2012) Experimental and applied mechanics, vol 4. In: Proceedings of the 2012 annual conference on experimental and applied mechanics. Springer, New York

    Google Scholar 

  34. Ochoa ER, Vacanti JP (2002) An overview of the pathology and approaches to tissue engineering. Ann N Y Acad Sci 979:10–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology for Scientific Research (23106002 and 24106506) and the Nagoya University Global COE program for Education and the Research of Micro-Nano Mechatronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Masuda Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Masuda, T., Arai, F. (2014). Rapid Assembly of Cellular Aggregation Using Micro-Nano Technologies. In: Akashi, M., Akagi, T., Matsusaki, M. (eds) Engineered Cell Manipulation for Biomedical Application. Nanomedicine and Nanotoxicology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55139-3_2

Download citation

Publish with us

Policies and ethics