Skip to main content

Functional Nanoparticles for Vaccine Delivery Systems

  • Chapter
  • First Online:
  • 1091 Accesses

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

One of the most important current issues in vaccinology is the need for vaccine delivery systems and adjuvants as an immune stimulator (immunostimulant). Polymeric nanoparticles with entrapped vaccine antigens, such as proteins, peptides, and DNA, have recently been shown to possess significant potential as vaccine delivery systems and immunostimulants. Novel nanoparticle-based vaccines are being evaluated in a variety of vaccine therapy including infectious diseases, cancers, or autoimmune diseases. Biodegradable nanoparticles that can control physicochemical properties, such as particle size, surface charge, and polymer composition, are promising candidate adjuvant systems to enhance vaccine efficacy. In this review, polymeric nanoparticles as vaccine delivery systems and immunostimulants are addressed with focus on (1) targeting of antigens to antigen-presenting cells (APCs), (2) control of the intracellular trafficking and biodistribution of nanoparticles, and (3) activation of APCs by particles for the development of effective vaccines. Understanding the strategies and mechanisms of immune induction by nanoparticle-based vaccines will help in the design guide of nanoparticle for the development of novel adjuvants. The development of safe and efficacious novel adjuvants is strongly desired. Vaccine delivery systems mainly function to target antigens to APCs, and immunostimulants directly activate these cells through specific receptors. The targeting antigen specifically to dendritic cells (DCs) and their subsequent activation with nanoparticles has demonstrated exciting potential for developing new vaccine technology. Uptake of nanoparticles by DCs can be controlled by altering properties of the nanoparticles, including size and surface characteristics. Moreover, novel chemical strategies can be employed to modulate DC maturation and immune presentation of antigens. This approach will enable both preventative and therapeutic vaccination for immune diseases requiring cellular immunity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Singh M, O’Hagan DT (1999) Advances in vaccine adjuvants. Nat Biotechnol 17:1075–1081

    Article  CAS  PubMed  Google Scholar 

  2. Singh M, O’Hagan DT (2002) Recent advances in vaccine adjuvants. Pharm Res 19:715–728

    Article  CAS  PubMed  Google Scholar 

  3. Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    Article  CAS  PubMed  Google Scholar 

  4. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13:106–112

    Article  CAS  PubMed  Google Scholar 

  5. De Koker S, Lambrecht BN, Willart MA, van Kooyk Y, Grooten J, Vervaet C, Remon JP, De Geest BG (2011) Designing polymeric particles for antigen delivery. Chem Soc Rev 40:320–339

    Article  PubMed  Google Scholar 

  6. O’Hagan DT, Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2:727–735

    Article  PubMed  CAS  Google Scholar 

  7. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32:155–172

    Article  CAS  PubMed  Google Scholar 

  9. Brewer JM (2006) How do aluminium adjuvants work? Immunol Lett 102:10–15

    Article  CAS  PubMed  Google Scholar 

  10. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327

    Article  CAS  Google Scholar 

  11. Greenland JR, Letvin NL (2007) Chemical adjuvants for plasmid DNA vaccines. Vaccine 25:3731–3741

    Article  CAS  PubMed  Google Scholar 

  12. Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  14. Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59:718–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kreuter J (1996) Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189:503–505

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O’Hagan DT, Jeffery H, Davis SS (1994) The preparation and characterization of poly(lactide-co-glycolide) microparticles: III. Microparticle/polymer degradation rates and the in vitro release of a model protein. Int J Pharm 103:37–45

    Article  Google Scholar 

  17. Li X, Deng X, Yuan M, Xiong C, Huang Z, Zhang Y, Jia W (2000) In vitro degradation and release profiles of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins. J Appl Polym Sci 78:140–148

    Article  CAS  Google Scholar 

  18. Liggins RT, Burt HM (2001) Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm 222:19–33

    Article  CAS  PubMed  Google Scholar 

  19. Lemoine D, Francois C, Kedzierewicz F, Preat V, Hoffman M, Maincent P (1996) Stability study of nanoparticles of poly(ε-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide). Biomaterials 17:2191–2197

    Article  CAS  PubMed  Google Scholar 

  20. Jiang W, Gupta RK, Deshpande MC, Schwendeman SP (2005) Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 57:391–410

    Article  CAS  PubMed  Google Scholar 

  21. Mohamed F, van der Walle CF (2008) Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci 97:71–87

    Article  CAS  PubMed  Google Scholar 

  22. Kumari A, Yadav SK, Yadav SC (2009) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75:1–18

    Article  CAS  Google Scholar 

  23. Tamber H, Johansen P, Merkle HP, Gander B (2005) Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev 57:357–376

    Article  CAS  PubMed  Google Scholar 

  24. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    Article  CAS  PubMed  Google Scholar 

  25. Sah H (1999) Stabilization of proteins against methylene chloride/water interface induced denaturation and aggregation. J Control Release 58:143–151

    Article  CAS  PubMed  Google Scholar 

  26. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release 92:173–187

    Article  CAS  PubMed  Google Scholar 

  27. Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Eisenberg A (1995) Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1268:1728–1731

    Article  Google Scholar 

  29. Dou H, Jiang M, Peng H, Chen D, Hong Y (2003) pH-dependent self-assembly: micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angew Chem Int Ed 42:1516–1519

    Article  CAS  Google Scholar 

  30. Reihs T, Muller M, Lunkwitz K (2004) Preparation and adsorption of refined polyelectrolyte complex nanoparticles. J Colloid Interface Sci 271:69–79

    Article  CAS  PubMed  Google Scholar 

  31. Kang N, Perron ME, Prudhomme RE, Zhang Y, Gaucher G, Leroux JC (2005) Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett 5:315–319

    Article  CAS  PubMed  Google Scholar 

  32. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    Article  CAS  PubMed  Google Scholar 

  33. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    Article  CAS  PubMed  Google Scholar 

  34. Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. J Am Chem Soc 127:12423–12428

    Article  CAS  PubMed  Google Scholar 

  35. Matsusaki M, Hiwatari K, Higashi M, Kaneko T, Akashi N (2004) Stably-dispersed and surface-functional bionanoparticles prepared by self-assembling amphipathic polymers of hydrophilic poly(γ-glutamic acid) bearing hydrophobic amino acids. Chem Lett 33:398–399

    Article  CAS  Google Scholar 

  36. Matsusaki M, Fuchida T, Kaneko T, Akashi M (2005) Self-assembling bionanoparticles of poly(ε-lysine) bearing cholesterol as a biomesogen. Biomacromolecules 6:2374–2379

    Article  CAS  PubMed  Google Scholar 

  37. Arimura H, Ohya Y, Ouchi T (2005) Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer. Biomacromolecules 6:720–725

    Article  CAS  PubMed  Google Scholar 

  38. Akiyoshi K, Ueminami A, Kurumada S, Nomura Y (2000) Self-association of cholesteryl-bearing poly(L-lysine) in water and control of its secondary structure by host-guest interaction with cyclodextrin. Macromolecules 33:6752–6756

    Article  CAS  Google Scholar 

  39. Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6:52–57

    Article  CAS  PubMed  Google Scholar 

  40. Jeong JH, Kang HS, Yang SR, Kim JD (2003) Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer 44:583–591

    Article  CAS  Google Scholar 

  41. Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS (2000) Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153

    Article  CAS  PubMed  Google Scholar 

  42. Lin J, Zhang S, Chen T, Lin S, Jin H (2007) Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. Int J Pharm 336:49–57

    Article  CAS  PubMed  Google Scholar 

  43. Lee ES, Shin HJ, Na K, Bae YH (2003) Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 90:363–374

    Article  CAS  PubMed  Google Scholar 

  44. Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993) Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotech Biochem 57:1212–1213

    Article  CAS  Google Scholar 

  45. King EC, Watkins WJ, Blacker AJ, Bugg TDH (1998) Covalent modification in aqueous solution of poly-γ-D-glutamic acid from Bacillus licheniformis. J Polym Sci A Polym Chem 36:1995–1999

    Article  CAS  Google Scholar 

  46. Morillo M, de Ilarduya AM, Munoz-Guerra S (2001) Comblike alkyl esters of biosynthetic poly(γ-glutamic acid) 1 Synthesis and characterization. Macromolecules 34:7868–7875

    Article  CAS  Google Scholar 

  47. Prodhomme EJF, Tutt AL, Glennie MJ, Bugg TDH (2003) Multivalent conjugates of poly-γ-D-glutamic acid from Bacillus licheniformis with antibody F(ab′) and glycopeptide ligands. Bioconj Chem 14:1148–1155

    Article  CAS  Google Scholar 

  48. Tachibana Y, Kurisawa M, Uyama H, Kobayashi S (2003) Thermo- and pH-responsive biodegradable poly(α-N-substituted γ-glutamine)s. Biomacromolecules 4:1132–1134

    Article  CAS  PubMed  Google Scholar 

  49. Shimokuri T, Kaneko T, Serizawa T, Akashi M (2004) Preparation and thermosensitivity of naturally occurring polypeptide poly(γ-glutamic acid) derivatives modified by alkyl groups. Macromol Biosci 4:407–411

    Article  CAS  PubMed  Google Scholar 

  50. Oppermann FB, Fickaitz S, Steinbiichel A (1998) Biodegradation of polyamides. Polym Degrad Stab 59:337–344

    Article  CAS  Google Scholar 

  51. Obst M, Steinbuchel A (2004) Microbial degradation of poly(amino acid)s. Biomacromolecules 5:1166–1176

    Article  CAS  PubMed  Google Scholar 

  52. Schneerson R, Kubler-Kielb J, Liu TY, Dai ZD, Leppla SH, Yergey A, Backlund P, Shiloach J, Majadly F, Robbins JB (2003) Poly(γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc Natl Acad Sci U S A 100:8945–8950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rhie GE, Roehrl MH, Mourez M, Collier RJ, Mekalanos JJ, Wang JY (2003) A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc Natl Acad Sci U S A 100:10925–10930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang TT, Fellows PF, Leighton TJ, Lucas AH (2004) Induction of opsonic antibodies to the gamma-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS Immunol Med Microbiol 40:231–237

    Article  PubMed  CAS  Google Scholar 

  55. Joyce J, Cook J, Chabot D, Hepler R, Shoop W, Xu Q, Stambaugh T, Aste-Amezaga M, Wang S, Indrawati L, Bruner M, Friedlander A, Keller P, Caulfield M (2006) Immunogenicity and protective efficacy of Bacillus anthracis poly-γ-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J Biol Chem 281:4831–4843

    Article  CAS  PubMed  Google Scholar 

  56. Kubler-Kielb J, Liu TY, Mocca C, Majadly F, Robbins JB, Schneerson R (2006) Additional conjugation methods and immunogenicity of Bacillus anthracis poly-γ-D-glutamic acid-protein conjugates. Infect Immun 74:4744–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shih IL, Van YT (2001) The production of poly(γ-glutamic acid) from microorganisms and its various application. Bioresour Technol 79:207–225

    Article  CAS  PubMed  Google Scholar 

  58. Kaneko T, Higashi M, Matsusaki M, Akagi T, Akashi M (2005) Self-assembled soft nanofibrils of amphipathic polypeptides and their morphological transformation. Chem Mater 17:2484–2486

    Article  CAS  Google Scholar 

  59. Akagi T, Baba M, Akashi M (2007) Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48:6729–6747

    Article  CAS  Google Scholar 

  60. Kim H, Akagi T, Akashi M (2009) Preparation of size tunable amphiphilic poly(amino acid) nanoparticles. Macromol Biosci 9:842–848

    Article  CAS  PubMed  Google Scholar 

  61. Akagi T, Kaneko T, Kida T, Akashi M (2005) Preparation and characterization of biodegradable nanoparticles based on poly(γ-glutamic acid) with L-phenylalanine as a protein carrier. J Control Release 108:226–236

    Article  CAS  PubMed  Google Scholar 

  62. Akagi T, Kaneko T, Kida T, Akashi M (2006) Multifunctional conjugation of proteins on/into core-shell type nanoparticles prepared by amphiphilic poly(γ-glutamic acid). J Biomater Sci Polym Ed 17:875–892

    Article  CAS  PubMed  Google Scholar 

  63. Portilla-Arias JA, Camargo B, Garcia-Alvarez M, de Ilarduya AM, Munoz-Guerra S (2009) Nanoparticles made of microbial poly(γ-glutamate)s for encapsulation and delivery of drugs and proteins. J Biomater Sci Polym Ed 20:1065–1079

    Article  CAS  PubMed  Google Scholar 

  64. Bodnar M, Kjoniksen AL, Molnar RM, Hartmann JF, Daroczi L, Nystrom B, Borbely J (2008) Nanoparticles formed by complexation of poly-γ-glutamic acid with lead ions. J Hazard Mater 153:1185–1192

    CAS  PubMed  Google Scholar 

  65. Radu JEF, Novak L, Hartmann JF, Beheshti N, Kjoniksen AL, Nystrom B, Borbely J (2008) Structural and dynamical characterization of poly-γ-glutamic acid-based cross-linked nanoparticles. Colloid Polym Sci 286:365–376

    Article  CAS  Google Scholar 

  66. Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–320

    Article  CAS  PubMed  Google Scholar 

  67. Jung SW, Jeong Y, Kim SH (2003) Characterization of hydrophobized pullulan with various hydrophobicities. Int J Pharm 254:109–121

    Article  CAS  PubMed  Google Scholar 

  68. Na K, Park KH, Kim SW, Bae YH (2000) Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release 69:225–236

    Article  CAS  PubMed  Google Scholar 

  69. Gref R, Rodrigues J, Couvreur P (2002) Polysaccharides grafted with polyesters: novel amphiphilic copolymers for biomedical applications. Macromolecules 35:9861–9867

    Article  CAS  Google Scholar 

  70. Leonard M, Boisseson MRD, Hubert P, Dalenccon F, Dellacherie E (2004) Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 98:395–405

    Article  CAS  PubMed  Google Scholar 

  71. Park JH, Kwona S, Nam JO, Park RW, Chung H, Seo SB, Kim IS, Kwon IC, Jeong SY (2004) Self-assembled nanoparticles based on glycol chitosan bearing 5h-cholanic acid for RGD peptide delivery. J Control Release 95:579–588

    Article  CAS  PubMed  Google Scholar 

  72. Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    Article  CAS  Google Scholar 

  73. Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ (2005) Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials 26:5617–5623

    Article  CAS  PubMed  Google Scholar 

  74. Kang HS, Park SH, Lee YG, Son I (2007) Polyelectrolyte complex hydrogel composed of chitosan and poly(γ-glutamic acid) for biological application: preparation, physical properties, and cytocompatibility. J Appl Polym Sci 103:386–394

    Article  CAS  Google Scholar 

  75. Kim YH, Gihm SH, Park CR, Lee KY, Kim TW, Kwon IC, Chung H, Jeong SY (2001) Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier. Bioconj Chem 12:932–938

    Article  CAS  Google Scholar 

  76. Lee KY, Jo WH, Kwon IC, Kim YH, Jeong SY (1998) Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules 31:378–383

    Article  CAS  Google Scholar 

  77. Kida T, Inoue K, Akagi T, Akashi M (2007) Preparation of novel polysaccharide nanoparticles by the self-assembly of amphiphilic pectins and their protein-encapsulation ability. Chem Lett 36:940–941

    Article  CAS  Google Scholar 

  78. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  79. Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M (2004) Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol 82:506–516

    Article  CAS  PubMed  Google Scholar 

  80. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Akagi T, Wang X, Uto T, Baba M, Akashi M (2007) Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28:3427–3436

    Article  CAS  PubMed  Google Scholar 

  82. Uto T, Wang X, Sato K, Haraguchi M, Akagi T, Akashi M, Baba M (2007) Targeting of antigen to dendritic cells with poly(γ-glutamic acid) nanoparticles induce antigen-specific humoral and cellular immunity. J Immunol 178:2979–2986

    Article  CAS  PubMed  Google Scholar 

  83. Uto T, Akagi T, Hamasaki T, Akashi M, Baba M (2009) Modulation of innate and adaptive immunity by biodegradable nanoparticles. Immunol Lett 125:46–52

    Article  CAS  PubMed  Google Scholar 

  84. Akagi T, Kim H, Akashi M (2010) pH-dependent disruption of erythrocyte membrane by amphiphilic poly(amino acid) nanoparticles. J Biomater Sci Polym Ed 21:315–328

    Article  CAS  PubMed  Google Scholar 

  85. Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly(D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19:1480–1487

    Article  CAS  PubMed  Google Scholar 

  86. Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412

    Article  CAS  PubMed  Google Scholar 

  87. Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, Tyler PC, Davies NM (2003) Liposomal delivery of antigen to human dendritic cells. Vaccine 21:883–890

    Article  CAS  PubMed  Google Scholar 

  88. Foged C, Brodin B, Frokjaer S, Sundblad A (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298:315–322

    Article  CAS  PubMed  Google Scholar 

  89. Kanchan V, Panda AK (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28:5344–5357

    Article  CAS  PubMed  Google Scholar 

  90. Cohen JA, Beaudette TT, Tseng WW, Bachelder EM, Mende I, Engleman EG, Fréchet JM (2009) T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: the effect of particle size. Bioconj Chem 20:111–119

    Article  CAS  Google Scholar 

  91. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26:244–249

    Article  CAS  PubMed  Google Scholar 

  93. O’Hagan DT (1998) Recent advances in immunological adjuvants: the development of particulate antigen delivery systems. Expert Opin Invest Drugs 7:349–359

    Article  Google Scholar 

  94. Storni T, Kundig TM, Senti G, Johansen P (2005) Immunity in response to particulate antigen-delivery systems. Adv Drug Deliv Rev 57:333–355

    Article  CAS  PubMed  Google Scholar 

  95. Shen H, Ackerman AL, Cody V, Giodini A, Hinson ER, Cresswell P, Edelson RL, Saltzman WM, Hanlon DJ (2006) Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117:78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Plank C, Zauner W, Wagner E (1998) Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Deliv Rev 34:21–35

    Article  CAS  PubMed  Google Scholar 

  97. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  98. Yessine MA, Leroux JC (2004) Membrane-destabilizing polyanions: interaction with lipid bilayers and endosomal escape of biomacromolecules. Adv Drug Deliv Rev 56:999–1021

    Article  CAS  PubMed  Google Scholar 

  99. Chen R, Yue Z, Eccleston ME, Williams S, Slater NK (2005) Modulation of cell membrane disruption by pH-responsive pseudo-peptides through grafting with hydrophilic side chains. J Control Release 108:63–72

    Article  CAS  PubMed  Google Scholar 

  100. Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Fréchet JM (2003) A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc Natl Acad Sci U S A 29:4995–5000

    Article  CAS  Google Scholar 

  101. Standley SM, Kwon TJ, Murthy N, Kunisawa J, Shastri N, Guillaudeu SJ, Lau L, Fréchet JM (2004) Acid-degradable particles for protein-based vaccines: enhanced survival rate for tumor-challenged mice using ovalbumin model. Bioconj Chem 15:1281–1288

    Article  CAS  Google Scholar 

  102. Hu Y, Litwin T, Nagaraja AR, Kwong B, Katz J, Watson N, Irvine DJ (2007) Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett 7:3056–3064

    Article  CAS  PubMed  Google Scholar 

  103. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo. Proc Natl Acad Sci U S A 92:7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Murthy N, Robichaud JR, Tirrell DA, Stayton PS, Hoffman AS (1999) The design and synthesis of polymers for eukaryotic membrane disruption. J Control Release 61:137–143

    Article  CAS  PubMed  Google Scholar 

  105. Jones RA, Cheung CY, Black FE, Zia JK, Stayton PS, Hoffman AS, Wilson MR (2003) Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem J 372:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kusonwiriyawong C, van de Wetering P, Hubbell JA, Merkle HP, Walter E (2003) Evaluation of pH-dependent membrane-disruptive properties of poly(acrylic acid) derived polymers. Eur J Pharm Biopharm 56:237–246

    Article  CAS  PubMed  Google Scholar 

  107. Yessine MA, Meier C, Petereit HU, Leroux JC (2006) On the role of methacrylic acid copolymers in the intracellular delivery of antisense oligonucleotides. Eur J Pharm Biopharm 63:1–10

    Article  CAS  PubMed  Google Scholar 

  108. Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS (2010) Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconj Chem 21:2205–2212

    Article  CAS  Google Scholar 

  109. Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K, Mukai Y, Yoshioka Y, Akagi T, Akashi M, Nakagawa S (2008) Development of amphiphilic γ-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun 366:408–413

    Article  CAS  PubMed  Google Scholar 

  110. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226

    Article  CAS  PubMed  Google Scholar 

  111. Reddy ST, Swartz MA, Hubbell JA (2006) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27:573–579

    Article  CAS  PubMed  Google Scholar 

  112. Jones KS (2008) Biomaterials as vaccine adjuvants. Biotechnol Prog 24:807–814

    Article  CAS  PubMed  Google Scholar 

  113. Babensee JE (2007) Interaction of dendritic cells with biomaterials. Semin Immunol 20:101–108

    Article  PubMed  CAS  Google Scholar 

  114. Jilek S, Merkle HP, Walter E (2005) DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev 57:377–390

    Article  CAS  PubMed  Google Scholar 

  115. Black M, Trent A, Tirrell M, Olive C (2010) Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev Vaccines 9:157–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kawai T, Akira S (2005) Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17:338–344

    Article  CAS  PubMed  Google Scholar 

  117. Kim TW, Lee TY, Bae HC, Hahm JH, Kim YH, Park C, Kang TH, Kim CJ, Sung MH, Poo H (2007) Oral administration of high molecular mass poly-γ-glutamate induces NK cell-mediated antitumor immunity. J Immunol 179:775–780

    Article  CAS  PubMed  Google Scholar 

  118. Lee TY, Kim YH, Yoon SW, Choi JC, Yang JM, Kim CJ, Schiller JT, Sung MH, Poo HR (2009) Oral administration of poly-γ-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol Immunother 58:1781–1794

    Article  CAS  PubMed  Google Scholar 

  119. Tamayo I, Irache JM, Mansilla C, Ochoa-Repáraz J, Lasarte JJ, Gamazo C (2010) Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin Vaccine Immunol 17:1356–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T, Takahashi M, Yamanishi K, Mori Y (2009) Poly(γ-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine 27:5896–5905

    Article  CAS  PubMed  Google Scholar 

  121. Yamaguchi S, Tatsumi T, Takehara T, Sasakawa A, Yamamoto M, Kohga K, Miyagi T, Kanto T, Hiramatsu N, Akagi T, Akashi M, Hayashi N (2010) EphA2-derived peptide vaccine with amphiphilic poly(gamma-glutamic acid) nanoparticles elicits an anti-tumor effect against mouse liver tumor. Cancer Immunol Immunother 59:759–767

    Article  CAS  PubMed  Google Scholar 

  122. Yoshida M, Babensee JE (2004) Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J Biomed Mater Res 71:45–54

    Article  CAS  Google Scholar 

  123. Jilek S, Ulrich M, Merkle HP, Walter E (2004) Composition and surface charge of DNA-loaded microparticles determine maturation and cytokine secretion in human dendritic cells. Pharm Res 21:1240–1247

    Article  CAS  PubMed  Google Scholar 

  124. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E (2001) Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release 76:59–71

    Article  CAS  PubMed  Google Scholar 

  125. Matsusaki M, Larsson K, Akagi T, Lindstedt M, Akashi M, Borrebaeck CA (2005) Nanosphere induced gene expression in human dendritic cells. Nano Lett 5:2168–2173

    Article  CAS  PubMed  Google Scholar 

  126. Kwon YJ, Standley SM, Goh SL, Frechet JM (2005) Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J Control Release 105:199–212

    Article  CAS  PubMed  Google Scholar 

  127. Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK (2002) Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 245:109–121

    Article  CAS  PubMed  Google Scholar 

  128. Ataman-Onal Y, Munier S, Ganee A, Terrat C, Durand PY, Battail N, Martinon F, Le Grand R, Charles MH, Delair T, Verrier B (2006) Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release 112:175–185

    Article  PubMed  CAS  Google Scholar 

  129. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J (2007) Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A 81:652–662

    Article  PubMed  CAS  Google Scholar 

  130. Solbrig CM, Saucier-Sawyer JK, Cody V, Saltzman WM, Hanlon DJ (2007) Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells. Mol Pharm 4:47–57

    Article  CAS  PubMed  Google Scholar 

  131. Wendorf J, Chesko J, Kazzaz J, Ugozzoli M, Vajdy M, O’Hagan D, Singh M (2008) A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin 4:44–49

    Article  CAS  PubMed  Google Scholar 

  132. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26:5046–5057

    Article  CAS  PubMed  Google Scholar 

  133. Caputo A, Sparnacci K, Ensoli B, Tondelli L (2008) Functional polymeric nano/microparticles for surface adsorption and delivery of protein and DNA vaccines. Curr Drug Deliv 5:230–242

    Article  CAS  PubMed  Google Scholar 

  134. Nayak B, Panda AK, Ray P, Ray AR (2009) Formulation, characterization and evaluation of rotavirus encapsulated PLA and PLGA particles for oral vaccination. J Microencapsul 26:154–165

    Article  CAS  PubMed  Google Scholar 

  135. Slutter B, Plapied L, Fievez V, Sande MA, Des Rieux A, Schneider YJ, Van Riet E, Jiskoot W, Préat V (2009) Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J Control Release 138:113–121

    Article  PubMed  CAS  Google Scholar 

  136. Gutierro I, Hernandez RM, Igartua M, Gascón AR, Pedraz JL (2002) Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21:67–77

    Article  CAS  PubMed  Google Scholar 

  137. Chong CS, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J (2005) Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 102:85–99

    Article  CAS  PubMed  Google Scholar 

  138. Wilson KD, Raney SG, Sekirov L, Chikh G, de Jong SD, Cullis PR, Tam YK (2007) Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int Immunopharmacol 7:1064–1075

    Article  CAS  PubMed  Google Scholar 

  139. He C, Hua Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  CAS  PubMed  Google Scholar 

  140. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327

    Article  CAS  PubMed  Google Scholar 

  141. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    Article  CAS  PubMed  Google Scholar 

  142. Kwon YJ, James E, Shastri N, Fréchet JM (2005) In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci U S A 102:18264–18268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164

    Article  CAS  PubMed  Google Scholar 

  144. Oussoren C, Storm G (2001) Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 50:143–156

    Article  CAS  PubMed  Google Scholar 

  145. Reddy ST, Rehor A, Schmoekel HG (2006) In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release 112:26–34

    Article  CAS  PubMed  Google Scholar 

  146. Vilaa A, Sancheza A, Evorab C, Soriano I, McCallion O, Alonso MJ (2005) PLA-PEG particles as nasal protein carriers: the influence of the particle size. Int J Pharm 292:43–52

    Article  CAS  Google Scholar 

  147. Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, Gabrielsson S (2006) The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 6:1682–1686

    Article  CAS  PubMed  Google Scholar 

  148. Oyewumi MO, Kumar A, Cui Z (2010) Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 9:1095–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Baba and Dr. T. Uto (Kagoshima University, Japan) for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misturu Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Akagi, T., Akashi, M. (2014). Functional Nanoparticles for Vaccine Delivery Systems. In: Akashi, M., Akagi, T., Matsusaki, M. (eds) Engineered Cell Manipulation for Biomedical Application. Nanomedicine and Nanotoxicology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55139-3_12

Download citation

Publish with us

Policies and ethics