Skip to main content

Proton Magnetic Resonance Spectroscopy for Dementia

  • Chapter
  • First Online:
Book cover Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias
  • 2083 Accesses

Abstract

Proton magnetic resonance spectroscopy (MRS) can be used to investigate metabolite changes and shows potential for clinical study and diagnosis of degenerative disorders such as mild cognitive impairment (MCI), Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). The common features of those degenerative disorders include a decrease in the concentration of NAA or in the NAA/Cr ratio and increase in the concentration of mIns or in the mIns/Cr ratio. Moreover, these findings tend to be regionally specific to the diseases, for example, to the hippocampus and the posterior cingulate and precuneal cortices in cases of AD, to the occipital lobe in cases of DLB, and to the frontal lobe in cases of FTD. Therefore MRS has potential clinical utility to differentiate those disorders. However, this approach may not be thoroughly established due to the inherent difficulty of quantitative measurement of metabolites, and therefore its utility is still limited to the local institutional level. In this section, we first briefly introduce the basic theory and principal methodologies of MRS, which may be useful to cultivate a better understanding of targeting for clinicians and neuroscientists, and then discuss the clinical uses of MRS in dementia by reviewing the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klunk WE, Panchalingam K, Moossy J, McClure RJ, Pettegrew JW. N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study. Neurology. 1992;42(8):1578–85.

    Article  CAS  PubMed  Google Scholar 

  2. Shiino A, Matsuda M, Morikawa S, Inubushi T, Akiguchi I, Handa J. Proton magnetic resonance spectroscopy with dementia. Surg Neurol. 1993;39(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  3. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. Alzheimer disease: depiction of increased cerebral myo-inositol with proton MR spectroscopy. Radiology. 1993;187(2):433–7. doi:10.1148/radiology.187.2.8475286.

    Article  CAS  PubMed  Google Scholar 

  4. Drost DJ, Riddle WR, Clarke GD, Group AMT. Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys. 2002;29(9):2177–97.

    Article  CAS  PubMed  Google Scholar 

  5. Mekle R, Mlynarik V, Gambarota G, Hergt M, Krueger G, Gruetter R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med. 2009;61(6):1279–85. doi:10.1002/mrm.21961.

    Article  CAS  PubMed  Google Scholar 

  6. Duarte JM, Lei H, Mlynarik V, Gruetter R. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. NeuroImage. 2012;61(2):342–62. doi:10.1016/j.neuroimage.2011.12.038.

  7. O’Gorman RL, Michels L, Edden RA, Murdoch JB, Martin E. In vivo detection of GABA and glutamate with MEGA-PRESS: reproducibility and gender effects. J Magn Reson Imaging. 2011;33(5):1262–7. doi:10.1002/jmri.22520.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev. 1989;13(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  9. Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N. Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res. 1990;15(10):1009–16.

    Article  CAS  PubMed  Google Scholar 

  10. Nadler JV, Cooper JR. N-acetyl-L-aspartic acid content of human neural tumours and bovine peripheral nervous tissues. J Neurochem. 1972;19(2):313–9.

    Article  CAS  PubMed  Google Scholar 

  11. Miyake M, Kakimoto Y, Sorimachi M. A gas chromatographic method for the determination of N-acetyl-L-aspartic acid, N-acetyl-alpha-aspartylglutamic acid and beta-citryl-L-glutamic acid and their distributions in the brain and other organs of various species of animals. J Neurochem. 1981;36(3):804–10.

    Article  CAS  PubMed  Google Scholar 

  12. Ory-Lavollee L, Blakely RD, Coyle JT. Neurochemical and immunocytochemical studies on the distribution of N-acetyl-aspartylglutamate and N-acetyl-aspartate in rat spinal cord and some peripheral nervous tissues. J Neurochem. 1987;48(3):895–9.

    Article  CAS  PubMed  Google Scholar 

  13. Baslow MH, Hrabe J, Guilfoyle DN. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. J Mol Neurosci. 2007;32(3):235–45.

    Article  CAS  PubMed  Google Scholar 

  14. Ariyannur PS, Moffett JR, Manickam P, Pattabiraman N, Arun P, Nitta A, Nabeshima T, Madhavarao CN, Namboodiri AM. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: implications for specialized acetyl coenzyme A metabolism in the CNS. Brain Res. 2010;1335:1–13. doi:10.1016/j.brainres.2010.04.008.

    Article  CAS  PubMed  Google Scholar 

  15. Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Huppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2002;48(6):949–58. doi:10.1002/mrm.10304.

  16. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res. 1999;46(4):474–85. doi:10.1203/00006450-199910000-00019.

    Article  CAS  PubMed  Google Scholar 

  17. Urenjak J, Williams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992;59(1):55–61.

    Google Scholar 

  18. Baslow MH. N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res. 2003;28(6):941–53.

    Article  CAS  PubMed  Google Scholar 

  19. Baslow MH. N-acetylaspartate and N-acetylaspartylglutamate. In: Lajtha A, Oja S, Schousboe A, Saransaari P, editors. Handbook of neurochemistry and molecular neurobiology: amino acids and peptides in the nervous system. New York: Springer; 2007. p. 305–46.

    Chapter  Google Scholar 

  20. Choi IY, Gruetter R. In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int. 2003;43(4-5):317–22.

    Article  CAS  PubMed  Google Scholar 

  21. Choi IY, Gruetter R. Dynamic or inert metabolism? Turnover of N-acetyl aspartate and glutathione from D-[1-13C]glucose in the rat brain in vivo. J Neurochem. 2004;91(4):778–87. doi:10.1111/j.1471-4159.2004.02716.x.

  22. Moreno A, Ross BD, Bluml S. Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by (13)C MRS and [1-(13)C]glucose infusion. J Neurochem. 2001;77(1):347–50.

    Article  CAS  PubMed  Google Scholar 

  23. Hyder F, Chase JR, Behar KL, Mason GF, Siddeek M, Rothman DL, Shulman RG. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR. Proc Natl Acad Sci U S A. 1996;93(15):7612–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pfeuffer J, Tkac I, Choi IY, Merkle H, Ugurbil K, Garwood M, Gruetter R. Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1-13C] D-glucose. Magn Reson Med. 1999;41(6):1077–83.

    Google Scholar 

  25. Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson. 1999;141(1):104–20. doi:10.1006/jmre.1999.1895.

  26. Wiame E, Tyteca D, Pierrot N, Collard F, Amyere M, Noel G, Desmedt J, Nassogne MC, Vikkula M, Octave JN, Vincent MF, Courtoy PJ, Boltshauser E, van Schaftingen E. Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem J. 2010;425(1):127–36. doi:10.1042/BJ20091024.

    Article  CAS  Google Scholar 

  27. Tahay G, Wiame E, Tyteca D, Courtoy PJ, Van Schaftingen E. Determinants of the enzymatic activity and the subcellular localization of aspartate N-acetyltransferase. Biochem J. 2012;441(1):105–12. doi:10.1042/BJ20111179.

    Article  CAS  PubMed  Google Scholar 

  28. Huang W, Wang H, Kekuda R, Fei YJ, Friedrich A, Wang J, Conway SJ, Cameron RS, Leibach FH, Ganapathy V. Transport of N-acetylaspartate by the Na(+)-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J Pharmacol Exp Ther. 2000;295(1):392–403.

    CAS  PubMed  Google Scholar 

  29. Burri R, Steffen C, Herschkowitz N. N-acetyl-L-aspartate is a major source of acetyl groups for lipid synthesis during rat brain development. Dev Neurosci. 1991;13(6):403–11.

    Article  CAS  PubMed  Google Scholar 

  30. Namboodiri AM, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, Moffett JR, Madhavarao CN. Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol. 2006;252(1-2):216–23. doi:10.1016/j.mce.2006.03.016.

    Article  CAS  PubMed  Google Scholar 

  31. Martin E, Capone A, Schneider J, Hennig J, Thiel T. Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol. 2001;49(4):518–21.

    Article  CAS  PubMed  Google Scholar 

  32. Boltshauser E, Schmitt B, Wevers RA, Engelke U, Burlina AB, Burlina AP. Follow-up of a child with hypoacetylaspartia. Neuropediatrics. 2004;35(4):255–8. doi:10.1055/s-2004-821036.

    Article  CAS  PubMed  Google Scholar 

  33. Burlina AP, Schmitt B, Engelke U, Wevers RA, Burlina AB, Boltshauser E. Hypoacetylaspartia: clinical and biochemical follow-up of a patient. Adv Exp Med Biol. 2006;576:283–287. discussion 361-283. doi:10.1007/0-387-30172-0_20.

    Article  CAS  PubMed  Google Scholar 

  34. Becker I, Lodder J, Gieselmann V, Eckhardt M. Molecular characterization of N-acetylaspartylglutamate synthetase. J Biol Chem. 2010;285(38):29156–64. doi:10.1074/jbc.M110.111765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wroblewska B, Santi MR, Neale JH. N-acetylaspartylglutamate activates cyclic AMP-coupled metabotropic glutamate receptors in cerebellar astrocytes. Glia. 1998;24(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  36. Wroblewska B, Wroblewski JT, Saab OH, Neale JH. N-acetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J Neurochem. 1993;61(3):943–8.

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi Y, Momiyama A, Takahashi T, Ohishi H, Ogawa-Meguro R, Shigemoto R, Mizuno N, Nakanishi S. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature. 1993;366(6456):687–90. doi:10.1038/366687a0.

    Article  CAS  PubMed  Google Scholar 

  38. Sanchez-Prieto J, Budd DC, Herrero I, Vazquez E, Nicholls DG. Presynaptic receptors and the control of glutamate exocytosis. Trends Neurosci. 1996;19(6):235–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wroblewska B, Wegorzewska IN, Bzdega T, Olszewski RT, Neale JH. Differential negative coupling of type 3 metabotropic glutamate receptor to cyclic GMP levels in neurons and astrocytes. J Neurochem. 2006;96(4):1071–7. doi:10.1111/j.1471-4159.2005.03569.x.

    Article  CAS  PubMed  Google Scholar 

  40. Cartmell J, Schoepp DD. Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem. 2000;75(3):889–907.

    Article  CAS  PubMed  Google Scholar 

  41. Gafurov B, Urazaev AK, Grossfeld RM, Lieberman EM. N-acetylaspartylglutamate (NAAG) is the probable mediator of axon-to-glia signaling in the crayfish medial giant nerve fiber. Neuroscience. 2001;106(1):227–35.

    Article  CAS  PubMed  Google Scholar 

  42. Mesters JR, Barinka C, Li W, Tsukamoto T, Majer P, Slusher BS, Konvalinka J, Hilgenfeld R. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. EMBO J. 2006;25(6):1375–84. doi:10.1038/sj.emboj.7600969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaldis P, Hemmer W, Zanolla E, Holtzman D, Wallimann T. ‘Hot spots’ of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus. Dev Neurosci. 1996;18(5-6):542–54.

    Article  CAS  PubMed  Google Scholar 

  44. Aksenova MV, Burbaeva GS, Kandror KV, Kapkov DV, Stepanov AS. The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer’s disease patients. FEBS Lett. 1991;279(1):55–7.

    Google Scholar 

  45. Happe HK, Murrin LC. In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J Comp Neurol. 1995;351(1):94–103. doi:10.1002/cne.903510109.

    Article  CAS  PubMed  Google Scholar 

  46. Saltarelli MD, Bauman AL, Moore KR, Bradley CC, Blakely RD. Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci. 1996;18(5–6):524–34.

    CAS  PubMed  Google Scholar 

  47. Schloss P, Mayser W, Betz H. The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun. 1994;198(2):637–45. doi:10.1006/bbrc.1994.1093.

    Article  CAS  PubMed  Google Scholar 

  48. Braissant O, Henry H, Loup M, Eilers B, Bachmann C. Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res Mol Brain Res. 2001;86(1-2):193–201.

    Article  CAS  PubMed  Google Scholar 

  49. Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, Terasaki T. The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab. 2002;22(11):1327–35. doi:10.1097/00004647-200211000-00006.

    Article  CAS  PubMed  Google Scholar 

  50. Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M. Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res. 2003;974(1-2):37–42.

    Article  CAS  PubMed  Google Scholar 

  51. Braissant O, Bachmann C, Henry H. Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell Biochem. 2007;46:67–81.

    Google Scholar 

  52. Braissant O, Henry H. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis. 2008;31(2):230–9. doi:10.1007/s10545-008-0826-9.

    Article  CAS  PubMed  Google Scholar 

  53. Nakashima T, Tomi M, Tachikawa M, Watanabe M, Terasaki T, Hosoya K. Evidence for creatine biosynthesis in Muller glia. Glia. 2005;52(1):47–52. doi:10.1002/glia.20222.

    Article  PubMed  Google Scholar 

  54. Schmidt A, Marescau B, Boehm EA, Renema WK, Peco R, Das A, Steinfeld R, Chan S, Wallis J, Davidoff M, Ullrich K, Waldschutz R, Heerschap A, De Deyn PP, Neubauer S, Isbrandt D. Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum Mol Genet. 2004;13(9):905–21. doi:10.1093/hmg/ddh112.

    Article  CAS  PubMed  Google Scholar 

  55. Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci. 2004;20(1):144–60. doi:10.1111/j.1460-9568.2004.03478.x.

    Article  PubMed  Google Scholar 

  56. Salomons GS, van Dooren SJ, Verhoeven NM, Cecil KM, Ball WS, Degrauw TJ, Jakobs C. X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet. 2001;68(6):1497–500. doi:10.1086/320595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zwaal RF, Comfurius P, Bevers EM. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci. 2005;62(9):971–88. doi:10.1007/s00018-005-4527-3.

    Article  CAS  PubMed  Google Scholar 

  58. Naudi A, Jove M, Ayala V, Cabre R, Portero-Otin M, Pamplona R. Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions. Int J Mol Sci. 2013;14(2):3285–313. doi:10.3390/ijms14023285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pouwels PJ, Frahm J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med. 1998;39(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  60. Tan J, Bluml S, Hoang T, Dubowitz D, Mevenkamp G, Ross B. Lack of effect of oral choline supplement on the concentrations of choline metabolites in human brain. Magn Reson Med. 1998;39(6):1005–10.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Li SJ. Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 1998;39(1):28–33.

    Google Scholar 

  62. Bluml S, Seymour KJ, Ross BD. Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain. Magn Reson Med. 1999;42(4):643–54.

    Google Scholar 

  63. Kantarci K, Weigand SD, Petersen RC, Boeve BF, Knopman DS, Gunter J, Reyes D, Shiung M, O’Brien PC, Smith GE, Ivnik RJ, Tangalos EG, Jack CR Jr. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2007;28(9):1330–9. doi:10.1016/j.neurobiolaging.2006.06.018.

    Article  CAS  PubMed  Google Scholar 

  64. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH, Mufson EJ. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51(2):145–55.

    Article  CAS  PubMed  Google Scholar 

  65. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–31. doi:10.1016/S0140-6736(10)61349-9.

    Article  PubMed  Google Scholar 

  66. Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer’s disease. Mol Brain. 2011;4:3. doi:10.1186/1756-6606-4-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gentile MT, Reccia MG, Sorrentino PP, Vitale E, Sorrentino G, Puca AA, Colucci-D’Amato L. Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer’s disease pathogenesis. Mol Neurobiol. 2012;45(3):596–604. doi:10.1007/s12035-012-8279-4.

  68. Kwon HM, Yamauchi A, Uchida S, Preston AS, Garcia-Perez A, Burg MB, Handler JS. Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem. 1992;267(9):6297–301.

    CAS  PubMed  Google Scholar 

  69. Paredes A, McManus M, Kwon HM, Strange K. Osmoregulation of Na(+)-inositol cotransporter activity and mRNA levels in brain glial cells. Am J Phys. 1992;263(6 Pt 1):C1282–8.

    CAS  Google Scholar 

  70. Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem. 2002;82(4):736–54.

    Article  CAS  PubMed  Google Scholar 

  71. Bissonnette P, Lahjouji K, Coady MJ, Lapointe JY. Effects of hyperosmolarity on the Na+-myo-inositol cotransporter SMIT2 stably transfected in the Madin-Darby canine kidney cell line. Am J Physiol Cell Physiol. 2008;295(3):C791–9. doi:10.1152/ajpcell.00390.2007.

    Article  CAS  PubMed  Google Scholar 

  72. Ibsen L, Strange K. In situ localization and osmotic regulation of the Na(+)-myo-inositol cotransporter in rat brain. Am J Phys. 1996;271(4 Pt 2):F877–85.

    CAS  Google Scholar 

  73. Isaacks RE, Bender AS, Kim CY, Prieto NM, Norenberg MD. Osmotic regulation of myo-inositol uptake in primary astrocyte cultures. Neurochem Res. 1994;19(3):331–8.

    Article  CAS  PubMed  Google Scholar 

  74. Klaus F, Palmada M, Lindner R, Laufer J, Jeyaraj S, Lang F, Boehmer C. Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1. J Physiol. 2008;586(6):1539–47. doi:10.1113/jphysiol.2007.146191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wiese TJ, Dunlap JA, Conner CE, Grzybowski JA, Lowe WL Jr, Yorek MA. Osmotic regulation of Na-myo-inositol cotransporter mRNA level and activity in endothelial and neural cells. Am J Phys. 1996;270(4 Pt 1):C990–7.

    CAS  Google Scholar 

  76. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B. Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. EMBO J. 2001;20(16):4467–77. doi:10.1093/emboj/20.16.4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Di Daniel E, Mok MH, Mead E, Mutinelli C, Zambello E, Caberlotto LL, Pell TJ, Langmead CJ, Shah AJ, Duddy G, Kew JN, Maycox PR. Evaluation of expression and function of the H+/myo-inositol transporter HMIT. BMC Cell Biol. 2009;10:54. doi:10.1186/1471-2121-10-54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Uldry M, Steiner P, Zurich MG, Beguin P, Hirling H, Dolci W, Thorens B. Regulated exocytosis of an H+/myo-inositol symporter at synapses and growth cones. EMBO J. 2004;23(3):531–40. doi:10.1038/sj.emboj.7600072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Augustin R. The protein family of glucose transport facilitators: it’s not only about glucose after all. IUBMB Life. 2010;62(5):315–33. doi:10.1002/iub.315.

    CAS  PubMed  Google Scholar 

  80. Fu H, Li B, Hertz L, Peng L. Contributions in astrocytes of SMIT1/2 and HMIT to myo-inositol uptake at different concentrations and pH. Neurochem Int. 2012;61(2):187–94. doi:10.1016/j.neuint.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  81. Sturrock A, Laule C, Decolongon J, Dar Santos R, Coleman AJ, Creighton S, Bechtel N, Reilmann R, Hayden MR, Tabrizi SJ, Mackay AL, Leavitt BR. Magnetic resonance spectroscopy biomarkers in premanifest and early Huntington disease. Neurology. 2010;75(19):1702–10. doi:10.1212/WNL.0b013e3181fc27e4.

  82. Oz G, Hutter D, Tkac I, Clark HB, Gross MD, Jiang H, Eberly LE, Bushara KO, Gomez CM. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord. 2010;25(9):1253–61. doi:10.1002/mds.23067.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang W, Alexander GE, Daly EM, Shetty HU, Krasuski JS, Rapoport SI, Schapiro MB. High brain myo-inositol levels in the predementia phase of Alzheimer’s disease in adults with Down’s syndrome: a 1H MRS study. Am J Psychiatry. 1999;156(12):1879–86.

    CAS  PubMed  Google Scholar 

  84. Beacher F, Simmons A, Daly E, Prasher V, Adams C, Margallo-Lana ML, Morris R, Lovestone S, Murphy K, Murphy DG. Hippocampal myo-inositol and cognitive ability in adults with Down syndrome: an in vivo proton magnetic resonance spectroscopy study. Arch Gen Psychiatry. 2005;62(12):1360–5. doi:10.1001/archpsyc.62.12.1360.

  85. Lamar M, Foy CM, Beacher F, Daly E, Poppe M, Archer N, Prasher V, Murphy KC, Morris RG, Simmons A, Lovestone S, Murphy DG. Down syndrome with and without dementia: an in vivo proton magnetic resonance spectroscopy study with implications for Alzheimer’s disease. NeuroImage. 2011;57(1):63–8. doi:10.1016/j.neuroimage.2011.03.073.

  86. Berry GT, Mallee JJ, Kwon HM, Rim JS, Mulla WR, Muenke M, Spinner NB. The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Genomics. 1995;25(2):507–13.

    Article  CAS  PubMed  Google Scholar 

  87. Videen JS, Michaelis T, Pinto P, Ross BD. Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest. 1995;95(2):788–93. doi:10.1172/JCI117728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990;85(5):1427–35. doi:10.1172/JCI114587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ. Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics. 2010;7(4):452–70. doi:10.1016/j.nurt.2010.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M, McCracken J. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology. 2001;24(4):359–69. doi:10.1016/S0893-133X(00)00207-4.

    Article  CAS  PubMed  Google Scholar 

  91. Moore GJ, Bebchuk JM, Parrish JK, Faulk MW, Arfken CL, Strahl-Bevacqua J, Manji HK. Temporal dissociation between lithium-induced changes in frontal lobe myo-inositol and clinical response in manic-depressive illness. Am J Psychiatry. 1999;156(12):1902–8.

    CAS  PubMed  Google Scholar 

  92. Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G. Valproate decreases inositol biosynthesis. Biol Psychiatry. 2004;56(11):868–74. doi:10.1016/j.biopsych.2004.08.027.

    Article  CAS  PubMed  Google Scholar 

  93. Williams RS, Harwood AJ. Lithium therapy and signal transduction. Trends Pharmacol Sci. 2000;21(2):61–4.

    Article  CAS  PubMed  Google Scholar 

  94. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci. 1993;15(3-5):289–98.

    Article  CAS  PubMed  Google Scholar 

  95. Glanville NT, Byers DM, Cook HW, Spence MW, Palmer FB. Differences in the metabolism of inositol and phosphoinositides by cultured cells of neuronal and glial origin. Biochim Biophys Acta. 1989;1004(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  96. Duarte JM, Carvalho RA, Cunha RA, Gruetter R. Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. J Neurochem. 2009;111(2):368–79. doi:10.1111/j.1471-4159.2009.06349.x.

    Article  CAS  PubMed  Google Scholar 

  97. Kim JP, Lentz MR, Westmoreland SV, Greco JB, Ratai EM, Halpern E, Lackner AA, Masliah E, Gonzalez RG. Relationships between astrogliosis and 1H MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model. AJNR Am J Neuroradiol. 2005;26(4):752–9.

    PubMed  Google Scholar 

  98. Kunz N, Camm EJ, Somm E, Lodygensky G, Darbre S, Aubert ML, Huppi PS, Sizonenko SV, Gruetter R. Developmental and metabolic brain alterations in rats exposed to bisphenol A during gestation and lactation. Int J Dev Neurosci. 2011;29(1):37–43. doi:10.1016/j.ijdevneu.2010.09.009.

    Article  CAS  PubMed  Google Scholar 

  99. Godfrey DA, Hallcher LM, Laird MH, Matschinsky FM, Sherman WR. Distribution of myo-inositol in the cat cochlear nucleus. J Neurochem. 1982;38(4):939–47.

    Article  CAS  PubMed  Google Scholar 

  100. Sherman WR, Packman PM, Laird MH, Boshans RL. Measurement of myo-inositol in single cells and defined areas of the nervous system by selected ion monitoring. Anal Biochem. 1977;78(1):119–31.

    Article  CAS  PubMed  Google Scholar 

  101. Hertz L, Peng L, Dienel GA. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab. 2007;27(2):219–49. doi:10.1038/sj.jcbfm.9600343.

    Article  CAS  PubMed  Google Scholar 

  102. Shen J, Petersen KF, Behar KL, Brown P, Nixon TW, Mason GF, Petroff OA, Shulman GI, Shulman RG, Rothman DL. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc Natl Acad Sci U S A. 1999;96(14):8235–40.

    Google Scholar 

  103. Waagepetersen HS, Sonnewald U, Schousboe A. Glutamine, glutamate, and GABA: metabolic aspects. In: Lajtha A, Oja S, Schousboe A, Saransaari P, editors. Handbook of neurochemistry and molecular neurobiology: amino acids and peptides in the nervous system. New York: Springer; 2007. p. 1–21.

    Google Scholar 

  104. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129–53.

    Article  CAS  PubMed  Google Scholar 

  105. Jensen JE, Licata SC, Ongur D, Friedman SD, Prescot AP, Henry ME, Renshaw PF. Quantification of J-resolved proton spectra in two-dimensions with LCModel using GAMMA-simulated basis sets at 4 Tesla. NMR Biomed. 2009;22(7):762–9. doi:10.1002/nbm.1390.

    Article  CAS  PubMed  Google Scholar 

  106. Kauppinen RA, Williams SR. Nondestructive detection of glutamate by 1H nuclear magnetic resonance spectroscopy in cortical brain slices from the guinea pig: evidence for changes in detectability during severe anoxic insults. J Neurochem. 1991;57(4):1136–44.

    Article  CAS  PubMed  Google Scholar 

  107. Bartha R, Drost DJ, Menon RS, Williamson PC. Spectroscopic lineshape correction by QUECC: combined QUALITY deconvolution and eddy current correction. Magn Reson Med. 2000;44(4):641–5.

    Article  CAS  PubMed  Google Scholar 

  108. Dong Z, Peterson BS. Spectral resolution amelioration by deconvolution (SPREAD) in MR spectroscopic imaging. J Magn Reson Imaging. 2009;29(6):1395–405. doi:10.1002/jmri.21784.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Poullet JB, Sima DM, Simonetti AW, De Neuter B, Vanhamme L, Lemmerling P, Van Huffel S. An automated quantitation of short echo time MRS spectra in an open source software environment: AQSES. NMR Biomed. 2007;20(5):493–504. doi:10.1002/nbm.1112.

    Article  CAS  PubMed  Google Scholar 

  110. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14(4):260–4.

    Google Scholar 

  111. Slotboom J, Boesch C, Kreis R. Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med. 1998;39(6):899–911.

    Article  CAS  PubMed  Google Scholar 

  112. Sima DM, Osorio-Garcia MI, Poullet J-B, Suvichakorn A, Antoine J-P, Van Huffel S, van Ormondt D. Lineshape estimation for MRS signals: self-deconvolution revisited. Meas Sci Technol. 2009;20(10):104031. doi:10.1088/0957-0233/20/10/104031.

    Article  CAS  Google Scholar 

  113. Cudalbu C, Mlynarik V, Gruetter R. Handling macromolecule signals in the quantification of the neurochemical profile. J Alzheimer’s Dis. 2012;31(Suppl 3):S101–15. doi:10.3233/JAD-2012-120100.

    Google Scholar 

  114. Seeger U, Klose U, Mader I, Grodd W, Nagele T. Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med. 2003;49(1):19–28. doi:10.1002/mrm.10332.

    Article  CAS  PubMed  Google Scholar 

  115. Vanhamme L, Sundin T, Van Hecke P, Van Huffel S, Pintelon R. Frequency-selective quantification of biomedical magnetic resonance spectroscopy data. J Magn Reson. 2000;143(1):1–16. doi:10.1006/jmre.1999.1960.

    Article  CAS  PubMed  Google Scholar 

  116. Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D. Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed. 2005;18(1):1–13. doi:10.1002/nbm.895.

    Article  CAS  PubMed  Google Scholar 

  117. Smith SA, Levante TO, Meier BH, Ernst RR. Computer simulations in magnetic resonance. An object oriented programming approach. J Magn Reson A. 1994;106(1):75–105. doi:10.1006/jmra.1994.1008.

    Article  CAS  Google Scholar 

  118. De Neuter B, Luts J, Vanhamme L, Lemmerling P, Van Huffel S. Java-based framework for processing and displaying short-echo-time magnetic resonance spectroscopy signals. Comput Methods Prog Biomed. 2007;85(2):129–37. doi:10.1016/j.cmpb.2006.09.005.

    Article  Google Scholar 

  119. Poullet JB, Sima DM, Van Huffel S. MRS signal quantitation: a review of time- and frequency-domain methods. J Magn Reson. 2008;195(2):134–44. doi:10.1016/j.jmr.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  120. Poullet JB, Pintelon R, Van Huffel S. A new FIR filter technique for solvent suppression in MRS signals. J Magn Reson. 2009;196(1):61–73. doi:10.1016/j.jmr.2008.10.011.

    Article  CAS  PubMed  Google Scholar 

  121. Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol. 2009;20(10):104035. doi:10.1088/0957-0233/20/10/104035.

    Article  CAS  Google Scholar 

  122. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12(2-3):141–52.

    Article  CAS  PubMed  Google Scholar 

  123. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  124. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.

    Google Scholar 

  125. Mosconi E, Sima DM, Osorio Garcia MI, Fontanella M, Fiorini S, Van Huffel S, Marzola P. Different quantification algorithms may lead to different results: a comparison using proton MRS lipid signals. NMR Biomed. 2014;27(4):431–43. doi:10.1002/nbm.3079.

    Article  CAS  PubMed  Google Scholar 

  126. Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D. Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed. 2001;14(4):278–83.

    Article  CAS  PubMed  Google Scholar 

  127. Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed. 2004;17(6):361–81. doi:10.1002/nbm.891.

    Article  CAS  PubMed  Google Scholar 

  128. Osorio-Garcia MI. Quantification of magnetic resonance spectroscopy signals with lineshape estimation. J Chemom. 2011;25(4):183–92. doi:10.1002/cem. 1353.

    Article  CAS  Google Scholar 

  129. Moonen CT, von Kienlin M, van Zijl PC, Cohen J, Gillen J, Daly P, Wolf G. Comparison of single-shot localization methods (STEAM and PRESS) for in vivo proton NMR spectroscopy. NMR Biomed. 1989;2(5-6):201–8.

    Google Scholar 

  130. Kwock L. Clinical proton magnetic resonance spectroscopy: basic principles. In: Mukherji SK, editor. Clinical applications of MR spectroscopy. New York: Wiley-Liss; 1998. p. 1–31.

    Google Scholar 

  131. Jansen JF, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology. 2006;240(2):318–32. doi:10.1148/radiol.2402050314.

    Article  PubMed  Google Scholar 

  132. Brooks JC, Roberts N, Kemp GJ, Gosney MA, Lye M, Whitehouse GH. A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex. 2001;11(7):598–605.

    Article  CAS  PubMed  Google Scholar 

  133. Sailasuta N, Ernst T, Chang L. Regional variations and the effects of age and gender on glutamate concentrations in the human brain. Magn Reson Imaging. 2008;26(5):667–75. doi:10.1016/j.mri.2007.06.007.

    Article  CAS  PubMed  Google Scholar 

  134. Chang L, Jiang CS, Ernst T. Effects of age and sex on brain glutamate and other metabolites. Magn Reson Imaging. 2009;27(1):142–5. doi:10.1016/j.mri.2008.06.002.

    Article  CAS  PubMed  Google Scholar 

  135. Charlton RA, McIntyre DJ, Howe FA, Morris RG, Markus HS. The relationship between white matter brain metabolites and cognition in normal aging: the GENIE study. Brain Res. 2007;1164:108–16. doi:10.1016/j.brainres.2007.06.027.

    Article  CAS  PubMed  Google Scholar 

  136. Raininko R, Mattsson P. Metabolite concentrations in supraventricular white matter from teenage to early old age: a short echo time 1H magnetic resonance spectroscopy (MRS) study. Acta Radiol. 2010;51(3):309–15. doi:10.3109/02841850903476564.

    Article  PubMed  Google Scholar 

  137. Kantarci K, Weigand SD, Przybelski SA, Preboske GM, Pankratz VS, Vemuri P, Senjem ML, Murphy MC, Gunter JL, Machulda MM, Ivnik RJ, Roberts RO, Boeve BF, Rocca WA, Knopman DS, Petersen RC, Jack CR Jr. MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology. 2013;81(2):126–33. doi:10.1212/WNL.0b013e31829a3329.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Parnetti L, Tarducci R, Presciutti O, Lowenthal DT, Pippi M, Palumbo B, Gobbi G, Pelliccioli GP, Senin U. Proton magnetic resonance spectroscopy can differentiate Alzheimer’s disease from normal aging. Mech Ageing Dev. 1997;97(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  139. Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, Doddrell DM. A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging. 1999;17(2):291–9.

    Article  CAS  PubMed  Google Scholar 

  140. Zhu X, Schuff N, Kornak J, Soher B, Yaffe K, Kramer JH, Ezekiel F, Miller BL, Jagust WJ, Weiner MW. Effects of Alzheimer disease on fronto-parietal brain N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic imaging. Alzheimer Dis Assoc Disord. 2006;20(2):77–85. doi:10.1097/01.wad.0000213809.12553.fc.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, Josephs KA, Boeve BF, Petersen RC, Jack CR Jr. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology. 2008;248(1):210–20. doi:10.1148/radiol.2481071590.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jessen F, Block W, Traber F, Keller E, Flacke S, Lamerichs R, Schild HH, Heun R. Decrease of N-acetylaspartate in the MTL correlates with cognitive decline of AD patients. Neurology. 2001;57(5):930–2.

    Article  CAS  PubMed  Google Scholar 

  143. Doraiswamy PM, Steffens DC, Pitchumoni S, Tabrizi S. Early recognition of Alzheimer’s disease: what is consensual? What is controversial? What is practical? J Clin Psychiatry. 1998;59(Suppl 13):6–18.

    PubMed  Google Scholar 

  144. Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla A, Zhang B, Gunter JL, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Jack CR Jr, Dickson DW, Kantarci K. Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. J Neurosci. 2014;34(49):16247–55. doi:10.1523/JNEUROSCI.2027-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Westman E, Wahlund LO, Foy C, Poppe M, Cooper A, Murphy D, Spenger C, Lovestone S, Simmons A. Combining MRI and MRS to distinguish between Alzheimer’s disease and healthy controls. J Alzheimer’s Dis. 2010;22(1):171–81. doi:10.3233/JAD-2010-100168.

    Article  Google Scholar 

  146. Kantarci K, Xu Y, Shiung MM, O’Brien PC, Cha RH, Smith GE, Ivnik RJ, Boeve BF, Edland SD, Kokmen E, Tangalos EG, Petersen RC, Jack CR Jr. Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2002;14(4):198–207. doi: 66021

    Article  PubMed  PubMed Central  Google Scholar 

  147. MacKay S, Ezekiel F, Di Sclafani V, Meyerhoff DJ, Gerson J, Norman D, Fein G, Weiner MW. Alzheimer disease and subcortical ischemic vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology. 1996;198(2):537–45. doi:10.1148/radiology.198.2.8596863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Martinez-Bisbal MC, Arana E, Marti-Bonmati L, Molla E, Celda B. Cognitive impairment: classification by 1H magnetic resonance spectroscopy. Eur J Neurol. 2004;11(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  149. Schuff N, Capizzano AA, AT D, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology. 2002;58(6):928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Silveira de Souza A, de Oliveira-Souza R, Moll J, Tovar-Moll F, Andreiuolo PA, Bottino CM. Contribution of 1H spectroscopy to a brief cognitive-functional test battery for the diagnosis of mild Alzheimer’s disease. Dement Geriatr Cogn Disord. 2011;32(5):351–61. doi:10.1159/000334656.

    Article  PubMed  Google Scholar 

  151. Watanabe T, Shiino A, Akiguchi I. Absolute quantification in proton magnetic resonance spectroscopy is useful to differentiate amnesic mild cognitive impairment from Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord. 2010;30(1):71–7. doi:10.1159/000318750.

    Article  CAS  PubMed  Google Scholar 

  152. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.

    Article  CAS  PubMed  Google Scholar 

  153. Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly: predictors of dementia. Neurology. 1991;41(7):1006–9.

    Article  CAS  PubMed  Google Scholar 

  154. Geslani DM, Tierney MC, Herrmann N, Szalai JP. Mild cognitive impairment: an operational definition and its conversion rate to Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;19(5-6):383–9. doi:10.1159/000084709.

    Article  PubMed  Google Scholar 

  155. Luis CA, Barker WW, Loewenstein DA, Crum TA, Rogaeva E, Kawarai T, St George-Hyslop P, Duara R. Conversion to dementia among two groups with cognitive impairment. A preliminary report. Dement Geriatr Cogn Disord. 2004;18(3-4):307–13. doi:10.1159/000080124.

    Article  PubMed  Google Scholar 

  156. Wolf H, Grunwald M, Ecke GM, Zedlick D, Bettin S, Dannenberg C, Dietrich J, Eschrich K, Arendt T, Gertz HJ. The prognosis of mild cognitive impairment in the elderly. J Neural Transm Suppl. 1998;54:31–50.

    Article  CAS  PubMed  Google Scholar 

  157. Ingles JL, Fisk JD, Merry HR, Rockwood K. Five-year outcomes for dementia defined solely by neuropsychological test performance. Neuroepidemiology. 2003;22(3):172–8. doi:69891

    Article  PubMed  Google Scholar 

  158. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252–65. doi:10.1111/j.1600-0447.2008.01326.x.

    Article  CAS  PubMed  Google Scholar 

  159. Markesbery WR. Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimer’s Dis. 2010;19(1):221–8. doi:10.3233/JAD-2010-1220.

    Article  Google Scholar 

  160. Chao LL, Schuff N, Kramer JH, AT D, Capizzano AA, O’Neill J, Wolkowitz OM, Jagust WJ, Chui HC, Miller BL, Yaffe K, Weiner MW. Reduced medial temporal lobe N-acetylaspartate in cognitively impaired but nondemented patients. Neurology. 2005;64(2):282–9. doi:10.1212/01.WNL.0000149638.45635.FF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE, Ivnik RJ, Boeve BF, Kokmen E, Tangalos EG, Petersen RC. Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: a 1H MRS study. Neurology. 2000;55(2):210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tumati S, Martens S, Aleman A. Magnetic resonance spectroscopy in mild cognitive impairment: systematic review and meta-analysis. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2571–86. doi:10.1016/j.neubiorev.2013.08.004.

    Article  PubMed  Google Scholar 

  163. Fayed N, Davila J, Oliveros A, Castillo J, Medrano JJ. Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia. Acad Radiol. 2008;15(9):1089–98. doi:10.1016/j.acra.2008.04.008.

    Article  PubMed  Google Scholar 

  164. Modrego PJ, Fayed N, Sarasa M. Magnetic resonance spectroscopy in the prediction of early conversion from amnestic mild cognitive impairment to dementia: a prospective cohort study. BMJ Open. 2011;1(1):e000007. doi:10.1136/bmjopen-2010-000007.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Modrego PJ, Fayed N, Pina MA. Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am J Psychiatry. 2005;162(4):667–75. doi:10.1176/appi.ajp.162.4.667.

    Article  PubMed  Google Scholar 

  166. Rami L, Gomez-Anson B, Sanchez-Valle R, Bosch B, Monte GC, Llado A, Molinuevo JL. Longitudinal study of amnesic patients at high risk for Alzheimer’s disease: clinical, neuropsychological and magnetic resonance spectroscopy features. Dement Geriatr Cogn Disord. 2007;24(5):402–10. doi:10.1159/000109750.

    Article  PubMed  Google Scholar 

  167. Metastasio A, Rinaldi P, Tarducci R, Mariani E, Feliziani FT, Cherubini A, Pelliccioli GP, Gobbi G, Senin U, Mecocci P. Conversion of MCI to dementia: role of proton magnetic resonance spectroscopy. Neurobiol Aging. 2006;27(7):926–32. doi:10.1016/j.neurobiolaging.2005.05.002.

    Article  CAS  PubMed  Google Scholar 

  168. Pilatus U, Lais C, Rochmont Adu M, Kratzsch T, Frolich L, Maurer K, Zanella FE, Lanfermann H, Pantel J. Conversion to dementia in mild cognitive impairment is associated with decline of N-actylaspartate and creatine as revealed by magnetic resonance spectroscopy. Psychiatry Res. 2009;173(1):1–7. doi:10.1016/j.pscychresns.2008.07.015.

    Article  CAS  PubMed  Google Scholar 

  169. Kantarci K, Weigand SD, Przybelski SA, Shiung MM, Whitwell JL, Negash S, Knopman DS, Boeve BF, O’Brien PC, Petersen RC, Jack CR Jr. Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. Neurology. 2009;72(17):1519–25. doi:10.1212/WNL.0b013e3181a2e864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Targosz-Gajniak MG, Siuda JS, Wicher MM, Banasik TJ, Bujak MA, Augusciak-Duma AM, Opala G. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci. 2013;335(1-2):58–63. doi:10.1016/j.jns.2013.08.023.

    Article  PubMed  Google Scholar 

  171. Kantarci K. Magnetic resonance spectroscopy in common dementias. Neuroimaging Clin N Am. 2013;23(3):393–406. doi:10.1016/j.nic.2012.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gibellini F, Smith TK. The Kennedy pathway – De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life. 2010;62(6):414–28. doi:10.1002/iub.337.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Shiino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Shiino, A. (2017). Proton Magnetic Resonance Spectroscopy for Dementia. In: Matsuda, H., Asada, T., Tokumaru, A. (eds) Neuroimaging Diagnosis for Alzheimer's Disease and Other Dementias. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55133-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55133-1_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55132-4

  • Online ISBN: 978-4-431-55133-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics