Skip to main content

Diversity of Microbial Eukaryotes in Deep Sea Chemosynthetic Ecosystems Illuminated by Molecular Techniques

  • Chapter

Abstract

Chemosynthetic ecosystems found in deep sea hydrothermal vents and cold seeps rely on the biological conversion of carbon dioxide or methane into organic matter using the oxidation of hydrogen sulfide or methane as a source of energy, rather than sunlight as in photosynthesis. It is known that communities of chemosynthetic ecosystems include endemic animals, such as mussels, clams, and tubeworms, along with bacterial and archaeal primary producers oxidizing reduced chemical species that support the survival of these animals. On the other hand, microbial eukaryotes (i.e., protists and fungi) in chemosynthetic ecosystems have not been investigated as thoroughly as the animals and prokaryotes. Nevertheless, mainly based on molecular techniques such as culture-independent PCR and fluorescence in situ hybridization, it has become more clearly understood that a phylogenetically broad range of microbial eukaryotes occurs in chemosynthetic ecosystems and that these microbes play a significant role as grazers, decomposers, or parasites. Furthermore, the existence of novel microbial eukaryotes exclusively or mainly inhabiting chemosynthetic ecosystems has also been suggested, stimulating future studies on their evolution and physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Atkins MS, Teske AP, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411

    Article  CAS  PubMed  Google Scholar 

  • Bernhard JM, Buck KR, Barry JP (2001) Monterey Bay cold seep biota: assemblages, abundance and ultrastructure of living foraminifera. Deep-Sea Res I 48:2233–2249

    Article  Google Scholar 

  • Bower SM, Carnegie RB, Goh B, Jones SR, Lowe GJ, Mak MW (2004) Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol 51:325–332

    Article  CAS  PubMed  Google Scholar 

  • Buck KR, Barry JP (1998) Monterey Bay cold seep infauna: quantitative comparison of bacterial mat meiofauna with non-seep control sites. Cah Biol Mar 39:333–335

    Google Scholar 

  • Buck KR, Barry JP, Simpson AGB (2000) Monterey Bay cold seep biota: euglenozoa with chemoautotrophic bacterial epibionts. Eur J Protistol 36:117–126

    Article  Google Scholar 

  • Buck KR, Barry JP, Hallam SJ (2014) Thioploca spp. sheaths as niches for bacterial and protistan assemblages. Mar Ecol 35:395–400

    Article  Google Scholar 

  • Coyne KJ, Countway PD, Pilditch CA, Lee CK, Caron DA, Cary SC (2013) Diversity and distributional patterns of ciliates in Guaymas Basin hydrothermal vent sediments. J Eukaryot Microbiol 60:433–447

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA (2013) Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujikura K, Hashimoto J, Okutani T (2002) Estimated population densities of megafauna in two chemosynthesis-based communities: a cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos Res 57:21–30

    Article  Google Scholar 

  • Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  PubMed  Google Scholar 

  • Kato C (2011) Cultivation methods for piezophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Tokyo, pp 719–726

    Chapter  Google Scholar 

  • Kolisko M, Silberman JD, Cepicka I, Yubuki N, Takishita K, Yabuki A, Leander BS, Inouye I, Inagaki Y, Roger AJ, Simpson AGB (2010) A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol 12:2700–2710

    CAS  PubMed  Google Scholar 

  • Komai T, Segonzac M et al (2006) Rimicaris exoculata. In: Desbruyères D, Segonzac M, Bright M (eds) Handbook of deep-sea hydrothermal vent fauna, Denisia 18. Land Oberosterreich, Biologiezentrum der Oberosterreichische Landesmuseen, Linz, p 428

    Google Scholar 

  • Kouris A, Juniper SK, Frébourg G, Gaill F (2007) Protozoan-bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge. Mar Ecol 28:63–71

    Article  Google Scholar 

  • Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Article  PubMed Central  PubMed  Google Scholar 

  • López-García P, Philippe H, Gaill F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702

    Article  PubMed Central  PubMed  Google Scholar 

  • López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  Google Scholar 

  • Moon-van der Staay SY, Tzeneva VA, van der Staay GW, de Vos WM, Smidt H, Hackstein JH (2006) Eukaryotic diversity in historical soil samples. FEMS Microbiol Ecol 57:420–428

    Article  CAS  PubMed  Google Scholar 

  • Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Noguchi F, Kawato M, Yoshida T, Fujiwara Y, Fujikura K, Takishita K (2013) A novel alveolate in bivalves with chemosynthetic bacteria inhabiting deep-sea methane seeps. J Eukaryot Microbiol 60:158–165

    Article  CAS  PubMed  Google Scholar 

  • Orphan VJ, Hinrichs KU, Ussler W 3rd, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Sauvad et al, Gobet A, Guillou L (2010) Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ Microbiol 12:2946–2964

    Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777

    Article  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576

    Article  CAS  PubMed  Google Scholar 

  • Takishita K, Kakizoe N, Yoshida T, Maruyama T (2010) Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. J Eukaryot Microbiol 57:76–86

    Article  CAS  PubMed  Google Scholar 

  • Van Dover CL, Ward ME, Scott JL, Underdown J, Anderson B, Gustafson C, Whalen M, Carnegie RB (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar Ecol 28:54–62

    Article  Google Scholar 

  • Yubuki N, Edgcomb VP, Bernhard JM, Leander BS (2009) Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria. BMC Microbiol 9:16

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Shinji Tsuchida (JAMSTEC) and Mr. Fumiya Noguchi (Tokyo University of Marine Science and Technology) for providing photographs for figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Takishita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Takishita, K. (2015). Diversity of Microbial Eukaryotes in Deep Sea Chemosynthetic Ecosystems Illuminated by Molecular Techniques. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_3

Download citation

Publish with us

Policies and ethics