Skip to main content

Relationships Between Aquatic Protists and Humans

  • Chapter
Marine Protists

Abstract

Protists exhibit a tremendously wide variety of lifestyles and metabolic functions. Considering predicted shortages of natural resources and foods in the near future, much more attention has to be paid to these potentialities of protists from applied and industrial points of view. We provide a general overview of their potentialities, some of which have already been industrialized. On the other hand, our health and economics have long been damaged by other potentialities of protists such as harmful algal blooms and paralytic shellfish poisoning . We have been intensively searching for effective countermeasures to avoid or reduce these detrimental impacts. Wise use of protistan beneficial potentialities is a key issue to respond adequately to rapidly and drastically ongoing changes of global environments. In addition we have to exactly consider what is now happening to the protistan communities due to anthropogenic impact s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anila N, Simon DP, Chandrashekar A, Sarada R (2013) Glucose-induced activation of H+-ATPase in Dunaliella salina and its role in hygromycin resistance. J Appl Phycol 25:121–128

    Article  CAS  Google Scholar 

  • Barker HA (1935) The culture and physiology of the marine dinoflagellates. Arch Microbiol 6:157–181

    Google Scholar 

  • Beare D, McQuatters-Gollop A, van der Hammen T et al (2013) Long-term trends in calcifying plankton and pH in the North Sea. PLoS One 8:e61175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beaufort L, Probert I, Buchert N (2007) Effects of acidification and primary production on coccolith weight: implications for carbonate transfer from the surface to the deep ocean. Geochem Geophys Geosyst 8(8):Q08011

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755

    Article  CAS  PubMed  Google Scholar 

  • Bernard C, Rassoulzadegan F (1990) Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar Ecol Prog Ser 64:147–155

    Article  Google Scholar 

  • Bjørklund KR, Kruglikova SB (2003) Polycystine radiolarians in surface sediments in the Arctic Ocean basins and marginal seas. Mar Micropaleontol 49:231–273

    Article  Google Scholar 

  • Brinkhuis H, Schouten S, Collinson ME et al (2006) Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441:606–609

    Article  CAS  PubMed  Google Scholar 

  • Carnegie RB (2005) Effects in mollusc culture. In: Rhode K (ed) Marine parasitology. CSIRO Publishing, Collingwood, pp 391–398

    Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Choi K-S, Park K-I (2010) Review on the protozoan parasite Perkinsus olseni (Lester and Davis 1981) infection in Asian waters. In: Lie H-J, Ishimatsu A and Lie H-J (eds) Coastal environmental and ecosystem issues of the East China Sea. TERRAPUB/Nagasaki University, pp 269–281

    Google Scholar 

  • Cohen P, Holmes CFB, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102

    Article  CAS  PubMed  Google Scholar 

  • Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT (2009) Live feeds for early stages of fish rearing. Aquac Res 41:613–640

    Article  Google Scholar 

  • Davidi L, Katz A, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33

    Article  CAS  PubMed  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA et al (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  PubMed  Google Scholar 

  • FAO (2013) Production from aquaculture by country and by ISSCAAP divisions. ftp://ftp.fao.org/FI/CDrom/CD_yearbo. Accessed 3 Sept 2013

  • Fu W, Guðmundsson Ó, Paglia G, Herjólfsson G, Andrésson ÓS, Palsson BØ, Brynjólfsson S (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97:2395–2403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fux E, Smith JL, Tong M, Guzmán L, Anderson DM (2011) Toxin profiles of five geographical isolates of Dinophysis spp. from North and South America. Toxicon 57:275–287

    Article  CAS  PubMed  Google Scholar 

  • Gregg WW, Conkright ME, Gioux P et al (2003) Ocean primary production and climate: global decadal changes. Geophys Res Lett 30:1809

    Article  Google Scholar 

  • Gregg WW, Casey NW, McClain CR (2005) Recent trends in global ocean chlorophyll. Geophys Res Lett 32:L03606

    Google Scholar 

  • Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448

    Article  CAS  Google Scholar 

  • Hackett JD, Tong M, Kulis DM, Fux E, Hess P, Bire R, Anderson DM (2009) DSP toxin production de vono in cultures of Dinophysis acuminata (Dinophyceae) from North America. Harmful Algae 8:873–879

    Google Scholar 

  • Harari A, Harats D, Marko D, Cohen H, Barshack I, Gonen A, Ben-Shushan D, Kamari Y, Ben-Amotz A, Shaish A (2013) Supplementation with 9-cis β-carotene-rich alga Dunaliella improves hyperglycemia and adipose tissue inflammation in diabetic mice. J Appl Phycol 25:687–693

    Article  CAS  Google Scholar 

  • Haynert K, Schönfeld J, Schiebel R et al (2013) Response of benthic foraminifera to ocean acidification in their natural sediment environment: a long-term culturing experiment. Biogeosci Discuss 10:9253–9572

    Article  Google Scholar 

  • Hibberd DJ (1977) Observations on the ultrastructure of the cryptomonad endosymbiont of the red-water ciliate Mesodinium rubrum. J Mar Biol Assoc UK 57:45–61

    Article  Google Scholar 

  • Hofmann M, Wormn B, Rahmstorf S et al (2011) Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ Res Lett 6:034035

    Article  Google Scholar 

  • Hönisch B, Ridgwell A, Schmidt DN et al (2012) The Geological record of ocean acidification. Science 335:1058–1063

    Article  PubMed  Google Scholar 

  • Ibañez E, Cifuentes A (2012) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93:703–709

    Article  Google Scholar 

  • Imani S, Rezaei-Zarchi S, Hashemi M, Borna H, Javid A, Am Z, Abarghouei HB (2011) Hg, Cd and Pb heavy metal bioremediation by Dunaliella alga. J Med Plant Res 5:2775–2780

    CAS  Google Scholar 

  • Inouye I (2007) The natural history of algae, 2nd edn. Tokai University Press, Co Ltd, Inc, Hatano (in Japanese)

    Google Scholar 

  • Irwin AJ, Oliver MJ (2009) Are ocean deserts getting larger? Geophys Res Lett 36:L18609

    Article  Google Scholar 

  • Itaki T, Ito M, Narita H et al (2003) Depth distribution of radiolarians from the Chukuchi and Beaufort Seas, western Arctic. Deep-Sea Res I 50:1507–1522

    Article  Google Scholar 

  • Janson S (2004) Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia. Environ Microbiol 6:1102–1106

    Article  CAS  PubMed  Google Scholar 

  • Janson S, Granéli E (2003) Genetic analysis of the psbA gene from single cells indicates a cryptomonad origin of the plastid in Dinophysis (Dinophyceae). Phycologia 42:473–477

    Article  Google Scholar 

  • Jarrold M (2012) How will ocean acidification affect marine photosynthetic organisms? A review. Plymouth Stud Sci 5:617–634

    Google Scholar 

  • Joseph SJ, Fernández-Robledo JA, Gardner MJ, El-Sayed NM, Kuo C-H, Schott EJ, Wang H, Kissnger JC, Vasta GR (2010) The alveolate Perkinsus marinus: biological insights from EST gene discovery. BMC Genomics 11:228

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamiyama T, Suzuki T (2009) Production of dinophysistoxin-1 and pectenotoxin-2 by a culture of Dinophysis acuminata (Dinophyceae). Harmful Algae 8:312–317

    Article  CAS  Google Scholar 

  • Korsnes MS, Espenes A (2011) Yessotoxin as an apoptotic inducer. Toxicon 57:947–958

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi M, Oyaizu H (2013) Applied microphycology-its utilization for food to energy. Seizando Co Ltd, Inc, Tokyo (in Japanese)

    Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

    Article  CAS  PubMed  Google Scholar 

  • Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:346–351

    Article  CAS  Google Scholar 

  • Lucas IAN, Vesk M (1990) The fine structure of two photosynthetic species of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 26:345–357

    Article  Google Scholar 

  • Manno C, Morata N, Bellerby R (2012) Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral). Polar Biol 35:1311–1319

    Article  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G, Buono S, Francia GD (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445–446:371–376

    Article  PubMed  Google Scholar 

  • Martinez MJ, Antoine D, D’Ortenzio F et al (2009) Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Meyen FJF (1834) Ãœber das Leuchten des Meeres und Beschreibung einiger Polypen und anderer niederer Thiere. Verh Kaiserlichen Leopol-Carolinischen Akad Naturforsch 16(2):125–216

    Google Scholar 

  • Minkova KM, Toshkova RA, Gardeva EG, Tchorbadjieva MI, Ivanova NJ, Yossifova LS, Gigova LG (2011) Antitumor activity of B-phycoerythrin from Porphyridium cruentum. J Pharm Res 4:1480–1482

    CAS  Google Scholar 

  • Mishra A, Kavita K, Jha B (2012) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857

    Article  Google Scholar 

  • Moran K, Backman J, Brinkhuis H et al (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441:601–605

    Article  CAS  PubMed  Google Scholar 

  • Moy AD, Howard WR, Bray SG et al (2009) Reduced calcification in modern Southern Ocean planktonic foraminifers. Nat Geosci 2:276–280

    Article  CAS  Google Scholar 

  • Nagai S, Nishitani G, Tomaru Y, Sakiyama S, Kamiyama T (2008) Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol 44:909–922

    Article  Google Scholar 

  • Nagai S, Suzuki T, Nishikawa T, Kamiyama T (2011) Differences in the production and excretion kinetics of okadaic acid, dinophysistoxin-1, and pectenotoxin-2 between cultures of Dinophysis acuminata and Dinophysis fortii isolated from western Japan. J Phycol 47:1326–1337

    Article  CAS  Google Scholar 

  • Nielsen LT, Krock B, Hansen PJ (2013) Production and excretion of okadaic acid, pectenotoxin-2 and a novel dinophysistoxin from the DSP-causing marine dinoflagellate Dinophysis acuta – effects of light, good availability and growth phase. Harmful Alage 23:34–45

    Article  CAS  Google Scholar 

  • Nishitani G, Nagai S, Sakiyama S, Kamiyama T (2008a) Successful cultivation of the toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton Benthos Res 3:78–85

    Article  Google Scholar 

  • Nishitani G, Nagai S, Takano Y, Sakiyama S, Baba K, Kamiyama T (2008b) Growth characteristics and phylogenetic analysis of the marine dinoflagellate Dinophysis infundibulus (Dinophyceae). Aquat Microb Ecol 52:209–221

    Article  Google Scholar 

  • Noren F, Moestrup Ø, Rehnstam-Holm A-S (1999) Parvilucifera infectans Noren et Moestrup gen. et sp. nov. (Perkinsozoa phylum nov.): a parasitic flagellate capable of killing toxic microalgae. Eur J Protistol 35:233–254

    Article  Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Philos Trans R Soc B 365(1541):699–712

    Article  CAS  Google Scholar 

  • Oliver LM, Fisher WS, Ford SE, Ragone Calvo LM, Burreston EM, Sutton EB, Gandy J (1998) Perkinsus marinus tissue distribution and seasonal variation in oysters Crassosterea virginica from Florida, Virginia and New York. Dis Aquat Org 34:51–61

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  CAS  PubMed  Google Scholar 

  • Park MG, Kim S, Kim HS, Myung G, Kang YG, Yih W (2006) First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol 45:101–106

    Article  Google Scholar 

  • Park MG, Park JS, Kim M, Yih W (2008) Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J Phycol 44:1154–1163

    Article  CAS  Google Scholar 

  • Peñuelas J, Poulter B, Sardans J et al (2013) Human-induced nitrogen-phosphorous imbalances alter natural and managed ecosystem across the globe. Nat Commun 4:2934

    PubMed  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436

    Article  CAS  Google Scholar 

  • Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P (2013) Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 40:781–796

    Article  CAS  PubMed  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618

    Google Scholar 

  • Quesnel DM, Bhaskar IM, Gieg LM, Chua G (2011) Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta. Chemosphere 84:504–511

    Article  CAS  PubMed  Google Scholar 

  • Ramos AA, Polle J, Tran D, Cushman JC, Jin E, Varela JC (2011) The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae 26:3–20

    Article  CAS  Google Scholar 

  • Razaghi A, Godhe A, Albers E (2014) Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum. Cent Eur J Biol 9:156–162

    CAS  Google Scholar 

  • Regnier P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    Article  CAS  Google Scholar 

  • Reguera B, Velo-Suárez L, Raine R, Park MG (2012) Harmful Dinophysis species: a review. Harmful Algae 14:87–106

    Article  Google Scholar 

  • Rhode K (ed) (2005) Marine parasitology. CSIRO publishing, Collingwood

    Google Scholar 

  • Rice MA (2000) Environmental impacts of shellfish aquaculture: filter feeding to control eutrophocation. In: Tlusty M, Bengtson D, Halvorson HO, Oktay S, Pearce J, Rheault RB Jr (eds) Marine aquaculture and the environment: a meeting for stakeholders in the Northeast. Cape Cod Press, Falmouth, pp 1–8

    Google Scholar 

  • Riebesell U, Ingrid Z, Björn R et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  CAS  PubMed  Google Scholar 

  • Rossini GP, Hess P (2010) Phycotoxins: chemistry, mechanisms of action and shellfish poisoning. In: Luch A (ed) Molecular, clinical and environmental toxicology, vol 2, Clinical toxicology. Birkhäuser, Basel, pp 65–122

    Chapter  Google Scholar 

  • Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Saffo MB, McCoy AM, Rieken C, Slamovits H (2010) Nephromyces, a beneficial apicomplexan symbiont in marine animals. Proc Natl Acad Sci U S A 107(37):16190–16195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnepf E, Elbrächter M (1988) Cryptophycean-like double membrane-bound chloroplast in the dinoflagellate Dinophysis Ehrenberg – evolutionary, phylogenetic and toxicological implications. Bot Acta 101:196–203

    Article  Google Scholar 

  • Schnepf E, Elbrächter M (1992) Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects. Eur J Protistol 28:3–24

    CAS  PubMed  Google Scholar 

  • Singh S, Arad S(M), Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275

    Article  CAS  Google Scholar 

  • Smith JL, Tong M, Fux E, Anderson DM (2012) Toxin production, retention, and extracellular release by Dinophysis acuminata during extended stationary phase and culture decline. Harmful Algae 19:125–132

    Article  CAS  Google Scholar 

  • Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87:1206–1210

    Article  CAS  Google Scholar 

  • Takishita K, Koike K, Maruyama T, Ogata T (2002) Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist 153:293–302

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330

    Article  CAS  Google Scholar 

  • Tasumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the eastern oyster (Crassostrea virginica) is a receptor for the protisan parasite Perkinsus marinus. J Immunol 179(5):3086–3098

    Article  CAS  PubMed  Google Scholar 

  • Taylor FJR, Blackbourn DJ, Blackbourn J (1969) Ultrastructure of the chloroplasts and associated sstructures within the marine ciliate Mesodinium rubrum (Lohmann). Nature 224:819–821

    Article  Google Scholar 

  • Tong M, Kulis DM, Fux E, Smith JL, Hess P, Zhou Q, Anderson DM (2011) The effects of growth phase and light intensity on toxin production by Dinophysis acuminata from the northeastern United States. Harmful Algae 10:254–264

    Article  CAS  Google Scholar 

  • Tyrrell T (2011) Anthropogenic modification of the oceans. Philos Trans R Soc A 369:887–908

    Article  CAS  Google Scholar 

  • Uthicke S, Momiglliano P, Fabricius KE (2013) High risk of extinction of benthic foraminifera in this century due to acidification. Sci Rep 3:1769

    Article  PubMed Central  Google Scholar 

  • Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol 47:789–807

    Article  CAS  Google Scholar 

  • Watanabe S (ed) (2012) Handbook of algae – their diversity and utilization. NTS Co Ltd, Inc, Tokyo (in Japanese)

    Google Scholar 

  • Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201

    Article  CAS  PubMed  Google Scholar 

  • Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 8:2185–2211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamada T (2010) Biological mutualism and parasitism: from molecular mechanisms to biotechnological applications. J Biosci Bioeng 88(2):48–53 (in Japanese)

    CAS  Google Scholar 

  • Yasumoto T, Oshima Y, Sugawara W, Fukuyo Y, Oguri H, Igarashi T, Fujita N (1980) Identification of Dinophysis fortii as the causative organism of diarrhetic shellfish poisoning in the Tohoku district. Bull Jpn Soc Sci Fish 46:1405–1411

    Article  Google Scholar 

  • Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (1985) Diarrhetic shellfish toxins. Tetrahedron 41:1019–1025

    Article  CAS  Google Scholar 

  • Zachos J, Pagani M, Sloan L et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ohtsuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Ohtsuka, S., Suzaki, T., Suzuki, N., Horiguchi, T., Suzuki, K. (2015). Relationships Between Aquatic Protists and Humans. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_26

Download citation

Publish with us

Policies and ethics