Skip to main content

Unusual Features of Dinokaryon, the Enigmatic Nucleus of Dinoflagellates

  • Chapter
Marine Protists

Abstract

The dinoflagellate is a member of the eukaryotes that belong to a diverged protist group, Alveolata. Because the nuclei show several unusual features not observed in other eukaryotes, the nucleus in the “core” or typical dinoflagellate is especially called a “dinokaryon”. Chromosomes in the dinokaryon are condensed throughout the whole cell cycle and show a cholesteric liquid crystal organization. Its nucleosome lacks the “beads on a string” structure which is commonly observed in eukaryotic nuclei. Despite the existence of canonical histone protein-coding genes, those proteins are not found in the dinokaryon, while certain proteins showing amino acid sequences similar to bacterial or viral proteins are abundantly contained in the dinokaryon. The dinoflagellate genome carries some rare bases such as 5-hydroxymethyluracil, and TTTT repeats exist as a possible transcription initiator element instead of the TATA box. A comprehensive transcriptome analysis of the EST database using a variety of dinoflagellates including ancestral to divergent species showed that SL trans-splicing is required for transcript maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adl SM, Simpson AGB, Farmer MA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Adl SM, Simpson AGB, Lane C et al (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed Central  PubMed  Google Scholar 

  • Afzelius BA (1963) The nucleus of Noctiluca scintillans: aspects of nucleocytoplasmic exchanges and the formation of nuclear membrane. J Cell Biol 19:229–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bachvaroff TR, Gornik SG, Concepcion GT et al (2014) Dinoflagellate phylogeny revisited: using ribosomal proteins to resolve deep branching dinoflagellate clades. Mol Phylogenet Evol 70:314–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bayer T, Aranda M, Sunagawa S et al (2012) Symbiodinium transcriptomes: Genome insights into the dinoflagellate Symbionts of Reef-Building Corals. PLoS One 7:e35269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhaud Y, Géraud ML, Ausseil J et al (1999) Cyclic expression of a nuclear protein in a dinoflagellate. J Eukaryot Microbiol 46:259–267

    Article  CAS  PubMed  Google Scholar 

  • Bhaud Y, Guillebault D, Lennon J et al (2000) Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis. J Cell Sci 113:1231–1239

    CAS  PubMed  Google Scholar 

  • Blank RJ, Huss VAR, Kersten W (1988) Base composition of DNA from symbiotic dinoflagellates: a tool for phylogenetic classification. Arch Microbiol 149:515–520

    Article  CAS  Google Scholar 

  • Bodansky S, Mintz LB, Holmes DS (1979) The mesokaryote Gyrodinium cohnii lacks nucleosomes. Biochem Biophys Res Commun 88:1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Bouligand Y, Soyer MO, Puiseux-Dao S (1968) La structure fibrillaire et l’orientation des chromosomes chez les Dinoflagellés. Chromosoma 24:251–287

    Article  CAS  PubMed  Google Scholar 

  • Bråte J, Krabberød AK, Dolven JK et al (2012) Radiolaria associated with large diversity of marine alveolates. Protist 163:767–777

    Article  PubMed  Google Scholar 

  • Brunelle SA, van Dolah FM (2011) Post-transcriptional regulation of S-phase genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol 58:373–382

    Article  CAS  PubMed  Google Scholar 

  • Cachon J, Cachon M (1987) Parasitic dinoflagellates. In: Taylor F (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 571–610

    Google Scholar 

  • Calkins GN (1899) Mitosis in Noctiluca miliaris and its bearing on the nuclear relations of the protozoa and metazoa. J Morphol 15:711–768

    Article  Google Scholar 

  • Cavalier-Smith T (1991) Cell diversification in heterotrophic flagellates. In: Larsen J, Patterson DJ (eds) In the biology of free-living heterotrophic flagellates. Clarendon Press, Oxford, pp 113–131

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Mol Biol Rev 57:953–994

    CAS  Google Scholar 

  • Chan YH, Wong JTY (2007) Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3. Nucleic Acids Res 35:2573–2583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan Y, Kwok A, Tsang J, Wong J (2006) Alveolata histone-like proteins have different evolutionary origins. J Evol Biol 19:1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Dechat T, Pfleghaar K, Sengupta K et al (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dodge JC (1965) Chromosome structure in the dinoflagellates and the problem of the mesokaryotic cell. Excerpta Med Int Congr Ser 91:339–345

    Google Scholar 

  • Dodge JD, Crawford RM (1971) Fine structure of the dinoflagellate Oxyrrhis marina I. The general structure of the cell. Protistologica 7:295–303

    Google Scholar 

  • Essers J, Theil AF, Baldeyron C et al (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25:9350–9359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  CAS  PubMed  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 28:237–240

    Article  Google Scholar 

  • Fukuda Y, Endoh H (2006) New details from the complete life cycle of the red-tide dinoflagellate Noctiluca scintillans (Ehrenberg) McCartney. Eur J Protistol 42:209–219

    Article  PubMed  Google Scholar 

  • Fukuda Y, Endoh H (2008) Phylogenetic analyses of the dinoflagellate Noctiluca scintillans based on β-tubulin and Hsp90 genes. Eur J Protistol 44:27–33

    Article  PubMed  Google Scholar 

  • Gabrielsen T, Minge M, Espelund M et al (2011) Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:e19132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galleron C (1984) The fifth base: a natural feature of dinoflagellate DNA. Orig Life Evol Biosph 13:195–203

    Article  CAS  Google Scholar 

  • Gao XP, Li JY (1986) Nuclear division in the marine dinoflagellate Oxyrrhis marina. J Cell Sci 85:161–175

    CAS  PubMed  Google Scholar 

  • Gómez F, Moreira D, López-García P (2010) Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae). Protist 161:466–478

    Article  PubMed  CAS  Google Scholar 

  • Gornik SG, Ford KL, Mulhern TD et al (2012) Loss of nucleosomal DNA condensation coincides with appearance of a novel nuclear protein in dinoflagellates. Curr Biol 22:2303–2312

    Article  CAS  PubMed  Google Scholar 

  • Gould S, Tham W, Cowman A et al (2008) Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol Biol Evol 25:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Groisillier A, Massana R, Valentin K, Vaulot D (2006) Genetic diversity and habitats of two enigmatic marine alveolate lineages. Aquat Microb Ecol 42:277–291

    Article  Google Scholar 

  • Guillebault D, Sasorith S, Derelle E, Wurtz JM, Lozano JC, Bingham S, Tora L, Moreau H (2002) A new class of transcription initiation factors, intermediate between TATA box-binding proteins (TBPs) and TBP-like factors (TLFs), is present in the marine unicellular organism, the dinoflagellate Crypthecodinium cohnii. J Biol Chem 277:40881–40886

    Google Scholar 

  • Guillebault D, Derelle E, Bhaud Y, Moreau H (2001) Role of nuclear WW domains and proline-rich proteins in dinoflagellate transcription. Protist 152:127–138

    Article  CAS  PubMed  Google Scholar 

  • Hackett J, Scheetz T, Yoon H et al (2005) Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 6:80

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamkalo BA, Rattner JB (1977) The structure of mesokaryote chromosome. Chromosoma 60:39–47

    Article  CAS  PubMed  Google Scholar 

  • Harada A, Ohtsuka S, Horiguchi T (2007) Species of the parasitic genus Duboscquella are members of the enigmatic marine alveolate group I. Protist 158:337–347

    Article  CAS  PubMed  Google Scholar 

  • Hastings KE (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247

    Article  CAS  PubMed  Google Scholar 

  • Herzog M, Soyer M (1981) Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans. Eur J Cell Biol 23:295–302

    CAS  PubMed  Google Scholar 

  • Herzog M, Soyer MO (1983) The native structure of dinoflagellate chromosomes and their stabilization by Ca2+ and Mg2+ cations. Eur J Cell Biol 30:33–41

    CAS  PubMed  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hoppenrath M, Leander BS (2010) Dinoflagellate phylogeny as inferred from heat shock protein 90 and ribosomal gene sequences. PLoS One 5:e13220

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ishida K-I, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci U S A 99:9294–9299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa C (1898) Further observations on the nuclear division of Noctiluca. J Coll Sci Imp Univ Tokyo 12:243–260

    Google Scholar 

  • Jackson CJ, Norman JE, Schnare MN et al (2007) Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 5:41

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jaeckisch N, Yang I, Wohlrab S et al (2011) Comparative genomic and transcriptomic characterization of the toxigenic marine dinoflagellate Alexandrium ostenfeldii. PLoS One 6:e28012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kallen RG, Simon M, Marmur J (1962) The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyl uracil. J Mol Biol 5:248–250

    Article  CAS  PubMed  Google Scholar 

  • Kato KH, Moriyama A, Huitorel P et al (1997) Isolation of the major basic nuclear protein and its localization on chromosomes of the dinoflagellate, Oxyrrhis marina. Biol Cell 89:43–52

    Article  CAS  PubMed  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Ki J-S (2010) Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in dinoflagellates. Eur J Protistol 46:111–120

    Article  PubMed  Google Scholar 

  • Leander BS, Keeling PJ (2004) Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from HSP90 and actin phylogenies. J Phycol 40:341–350

    Article  CAS  Google Scholar 

  • Leander BS, Kuvardina ON, Aleshin VV et al (2003) Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans. J Eukaryot Microbiol 50:334–340

    Article  PubMed  Google Scholar 

  • Lenaers G, Scholin C, Bhaud Y et al (1991) A molecular phylogeny of dinoflagellate protists (pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J Mol Evol 32:53–63

    Article  CAS  PubMed  Google Scholar 

  • Li JY (1984) Studies of dinoflagellate chromosomal basic protein. Biosystems 16:217–225

    Google Scholar 

  • Li L, Hastings JW (1998) The structure and organization of the luciferase gene in the photosynthetic dinoflagellate Gonyaulax polyedra. Plant Mol Biol 36:275–284

    Article  PubMed  Google Scholar 

  • Lin S, Zhang H, Zhuang Y et al (2010) Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc Natl Acad Sci U S A 107:20033–20038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livolant F, Bouligand Y (1978) New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma 68:21–44

    Article  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Mak CKM, Hung VKL, Wong JTY (2005) Type II topoisomerase activities in both the G1 and G2/M phases of the dinoflagellate cell cycle. Chromosoma 114:420–431

    Article  CAS  PubMed  Google Scholar 

  • Makde RD, England JR, Yennawar HP, Tan S (2010) Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467:562–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mínguez A, Franca S, Díaz M, de la Espina S (1994) Dinoflagellates have a eukaryotic nuclear matrix with lamin-like proteins and topoisomerase II. J Cell Sci 107:2861–2873

    PubMed  Google Scholar 

  • Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    Article  CAS  PubMed  Google Scholar 

  • Morden C, Sherwood A (2002) Continued evolutionary surprises among dinoflagellates. Proc Natl Acad Sci U S A 99:11558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nash E, Nisbet R, Barbrook A, Howe C (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335

    Article  CAS  PubMed  Google Scholar 

  • Oakley BR, Dodge JD (1979) Evidence for a double-helically coiled toroidal chromonema in the dinoflagellate chromosome. Chromosoma 70:277–291

    Article  CAS  Google Scholar 

  • Okamoto OK, Hastings JW (2003) Genome-wide analysis of redox-regulated genes in a dinoflagellate. Gene 321:73–81

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N, Horák A, Keeling P (2012) Description of two species of early branching dinoflagellates, Psammosa pacifica ng, n. sp. and P. atlantica n. sp. PLoS One 7:e34900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    Article  CAS  PubMed  Google Scholar 

  • Pfiester AL (1984) Sexual reproduction. In: Spector DL (ed) Dinoflagellates. Academic, Orlando, pp 181–199

    Google Scholar 

  • Rae PM (1973) 5-Hydroxymethyluracil in the DNA of a dinoflagellate. Proc Natl Acad Sci U S A 70:1141–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rae PM (1976) Hydroxymethyluracil in eukaryote DNA: a natural feature of the pyrrophyta (dinoflagellates). Science 194:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Raikov IB (1978) The protozoan nucleus. Morphology and evolution. English edition: Alfert M, Beermann W, Goldstein L, Porter KR, Sitte P (1982) Cell biology monographs, vol 9 (trans: Bbrov N, Verkhovtseva M). Springer, Wien/New York

    Google Scholar 

  • Raikov IB (1995) The dinoflagellate nucleus and chromosomes: mesokaryote concept reconsidered. Acta Protozool 34:239–247

    Google Scholar 

  • Rill RL, Livolant F, Aldrich HC, Davidson MW (1989) Electron microscopy of liquid crystalline DNA: direct evidence for cholesteric-like organization of DNA in dinoflagellate chromosomes. Chromosoma 98:280–286

    Article  CAS  PubMed  Google Scholar 

  • Rizzo PJ, Burghardt RC (1980) Chromatin structure in the unicellular algae Olisthodiscus luteus, Crypthecodinium cohnii and Peridinium balticum. Chromosoma 76:91–99

    Article  CAS  PubMed  Google Scholar 

  • Rizzo PJ, Morris RL (1984) Some properties of the histone-like protein from Crypthecodinium cohnii (HCc). Biosystems 16:211–216

    Article  CAS  Google Scholar 

  • Rizzo PJ, Noodén LD (1974) Partial characterization of dinoflagellate chromosomal proteins. Biochim Biophys Acta 349:415–427

    Article  CAS  PubMed  Google Scholar 

  • Rizzo PJ, Jones M, Ray SM (1982) Isolation and properties of isolated nuclei from the Florida red tide dinoflagellate Gymnodinium breve (Davis). J Protozool 29:217–222

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Morse D (2012) A Full suite of histone and histone modifying genes are transcribed in the dinoflagellate Lingulodinium. PLoS One 7:e34340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sala-Rovira M, Geraud M, Caput D et al (1991) Molecular cloning and immunolocalization of two variants of the major basic nuclear protein (HCc) from the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta). Chromosoma 100:510–518

    Article  CAS  PubMed  Google Scholar 

  • Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213

    Article  CAS  PubMed  Google Scholar 

  • Saldarriaga JF, McEwan ML, FAST NM et al (2003) Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365

    Article  CAS  PubMed  Google Scholar 

  • Saunders GW, Hill DRA, Sexton JP, Andersen RA (1997) Small subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer, Vienna, pp 237–259

    Chapter  Google Scholar 

  • Shoguchi E, Shinzato C, Kawashima T et al (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Sigee D (1984) Structural DNA and genetically active DNA in dinoflagellate chromosomes. Biosystems 16:203–210

    Article  CAS  Google Scholar 

  • Soyer MO (1969) L’enveloppe nucléaire chez Noctiluca miliaris S. (Dinoflagellata). I. Quelques données sur son ultrastructure et son évolution au cours de la sporogenèse. J Microsc 8:569–580

    Google Scholar 

  • Soyer MO (1972) Ultrastructure of the Nucleus of Noctiluca (Free Living Dinoflagellate) During Sporulation. Chromosoma 39:419–441

    Article  CAS  PubMed  Google Scholar 

  • Soyer-Gobillard MO, Géraud ML, Coulaud D et al (1990) Location of B- and Z-DNA in the chromosomes of a primitive eukaryote dinoflagellate. J Cell Biol 111:293–304

    Article  CAS  PubMed  Google Scholar 

  • Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed) Dinoflagellates. Academic, Orlando, pp 107–148

    Chapter  Google Scholar 

  • Spector DL, Triemer RE (1981) Chromosome structure and mitosis in the dinoflagellates: an ultrastructural approach to an evolutionary problem. Biosystems 14:289–298

    Article  CAS  PubMed  Google Scholar 

  • Spector DL, Vasconcelos AC, Triemer RE (1981) DNA duplication and chromosome structure in the dinoflagellates. Protoplasma 105:185–194

    Article  CAS  PubMed  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  • Steele RE, Rae P (1980) Ordered distribution of modified bases in the DNA of a dinoflagellate. Nucleic Acids Res 8:4709–4726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steidinger KA (1983) A re-evaluation of toxic dinoflagellate biology and ecology. In: Round FE, Chapman DT (eds) Progress in phycological research, vol 2. Elsevier, New York, pp 147–188

    Google Scholar 

  • Taylor FJR (1989) Phylum dinoflagellata. In: Margulis L, Corliss JO, Melkonian M, Chapman D (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 419–437

    Google Scholar 

  • Taylor F, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418

    Article  Google Scholar 

  • Vernet G, Sala-Rovira M, Maeder M et al (1990) Basic nuclear proteins of the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta): two-dimensional electrophoresis and DNA-binding properties. Biochim Biophys Acta 1048:281–289

    Article  CAS  PubMed  Google Scholar 

  • Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245

    Article  CAS  PubMed  Google Scholar 

  • Watrin E, Legagneux V (2003) Introduction to chromosome dynamics in mitosis. Biol Cell 95:507–513

    Article  CAS  PubMed  Google Scholar 

  • Wong JTY, New DC, Wong JCW, Hung VKL (2003) Histone-like proteins of the dinoflagellate Crypthecodinium cohnii have homologies to bacterial DNA-binding proteins. Eukaryot Cell 2:646–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Ishida Y, Uchida A (1996) There are 4 introns in the gene coding the DNA-binding protein HCc of Crypthecodinium cohnii (Dinophyceae). Fish Sci 62:204–209

    CAS  Google Scholar 

  • Zhang H, Lin S (2009) Retrieval of missing spliced leader in dinoflagellates. PLoS One 4:e4129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420

    Article  CAS  Google Scholar 

  • Zhang H, Hou Y, Lin S (2006) Isolation and characterization of proliferating cell nuclear antigen from the dinoflagellate Pfiesteria piscicida. J Eukaryot Microbiol 53:142–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Hou Y, Miranda L et al (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci U S A 104:4618–4623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zingmark R (1970) Sexual reproduction in the dinoflagellate Noctiluca miliaris suriray. J Phycol 6:122–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Fukuda, Y., Suzaki, T. (2015). Unusual Features of Dinokaryon, the Enigmatic Nucleus of Dinoflagellates. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_2

Download citation

Publish with us

Policies and ethics